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� A Gibbs sampling method can identify minimal electrode sets that are important for BCI
communication across a subject population without compromising information transfer.

� In healthy subjects, a reduced set of four electrodes (PO8, PO7, POZ, CPZ) was found that performed
statistically identically to a full montage in an online study.

� Reducing and optimizing the number of EEG channels may reduce cost, set-up time, signal bandwidth
and computation requirements and improve clinical practicality of P300 speller systems.

a b s t r a c t

Objective: The P300 speller is intended to restore communication to patients with advanced neuromus-
cular disorders, but clinical implementation may be hindered by several factors, including system setup,
burden, and cost. Our goal was to develop a method that can overcome these barriers by optimizing EEG
electrode number and placement for P300 studies within a population of subjects.
Methods: A Gibbs sampling method was developed to find the optimal electrode configuration given a set
of P300 speller data. The method was tested on a set of data from 15 healthy subjects using an established
32-electrode pattern. Resulting electrode configurations were then validated using online prospective
testing with a naïve Bayes classifier in 15 additional healthy subjects.
Results: The method yielded a set of four posterior electrodes (PO8, PO7, POZ, CPZ), which produced results
that are likely sufficient to be clinically effective. In online prospective validation testing, no significant
difference was found between subjects’ performances using the reduced and the full electrode configu-
rations.
Conclusions: The proposed method can find reduced sets of electrodes within a subject population with-
out reducing performance.
Significance: Reducing the number of channels may reduce costs, set-up time, signal bandwidth, and
computation requirements for practical online P300 speller implementation.
� 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

The P300 speller is an example of a Brain Computer Interfaces
(BCI) system designed to restore communication by translating
cortical signals into simulated keyboard input (Farwell and
Donchin, 1988). The system contains a graphical interface consist-
ing of a grid of alphanumeric characters that are periodically
illuminated in a pseudo random manner. While a promising tech-
nology, clinical adoption is limited by issues of practicality, speed,
and accuracy (Huggins et al., 2011; Baxter et al., 2012). Several
studies have focused on improving speed and accuracy, including
approaches that vary flashing patterns (Townsend et al., 2010;
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Jin et al., 2010), optimize system parameters (McFarland et al.,
2011; Lu et al., 2012), and adopt different signal classification
algorithms (Serby et al., 2005; Krusienski et al., 2006). Recently,
performance has been improved through the integration of natural
language processing method such as naïve Bayes (Speier et al.,
2012), partially observable Markov decision process (Park and
Kim, 2012), and expectation maximization (Kindermans et al.,
2012).

While system performance is an active area of research, there is
comparatively little focus and investigation with respect to ‘‘ease
of use.’’ Choosing the optimal placement and number of electrodes
is essential in any EEG system as it balances the amount of avail-
able data against the set-up time, cost, and system complexity.
There is minimal objective and quantitative analyses of the mini-
mal EEG electrode set that can be used to achieve optimal system
performance. Several studies have found similar offline perfor-
mance in the P300 speller between using a 32 channel EEG and
empirically chosen sets of six (Krusienski et al., 2008), eight
(Hoffmann et al., 2008), and ten (Kaper et al., 2004) electrodes.
These studies did not quantitatively deduce the described
electrode sets nor consider other reduced configurations, so they
present potential configurations, but do not show that they are
minimal or optimal. They are also restricted to P300 experiments
using healthy subjects and have been shown not to translate well
to situations where user gaze is limited, which is often the case
in the target population (Brunner et al., 2010).

Several recent studies have developed methods to rank elec-
trodes based on their contribution to offline classification accuracy
on an individual subject basis in P300 systems using EEG (Cecotti
et al., 2011; Xu et al., 2013; Colwell et al., 2014) and electrocorti-
cography (ECoG) (Speier et al., 2013a). These studies employed
methods in which an initial testing phase included data from a
complete electrode set to later determine a subject’s optimal con-
figuration, only after which the number of channels could be
reduced on a subject-specific basis. The configurations described
in these studies varied in channel number and location between
subjects, leading to the conclusion that subject-dependent config-
urations are necessary for optimal P300 performance. None of
these studies attempt to optimize across subjects to provide a gen-
eral configuration for comparison. Moreover, none of these studies
validated their results with prospective trials using the reduced
number of electrodes to demonstrate that they were robust across
sessions. Finally, the methods employed in these studies do not
improve ‘‘ease of use’’ for end users because the described
approaches require a full set of recording electrodes and amplifiers
for each subject before identifying an optimized reduced set.

The goal of this project was to provide a method for optimizing
EEG electrode placement for P300 studies across a subject popula-
tion, which we demonstrate by providing a minimal set of elec-
trodes for studies conducted on healthy subjects. In this study, we
initially use a retrospective offline analysis approach using a previ-
ously published data set of 15 healthy subjects with 32 electrodes
(Speier et al., 2014). Gibbs sampling was used to find sets of elec-
trodes based on the joint distribution of the subjects’ EEG signals
and the known labels. Offline testing with a naïve Bayes classifier
(Speier et al., 2012) was performed using data from each of these
electrode sets to show the relationship between the number of elec-
trodes and system performance. The optimal four electrode set was
then evaluated prospectively online against the full 32 electrode set
as well as the six electrode set presented by Krusienski et al. (2008)
to validate its viability in a real time BCI system.

Ultimately, these studies demonstrate an important method to
generate a clinically and practically non-inferior reduced electrode
set for a P300 speller that can and should be applied to target
populations to determine if an optimal reduced electrode set can
be identified in affected patient populations.
2. Methods

2.1. Data collection

The previously published dataset used in the sample implemen-
tation of our method consisted of 15 healthy graduate students and
faculty with normal or corrected to normal vision between the
ages of 20 and 35 (Speier et al., 2014). Only one subject (subject
F) had previous experience using a BCI for typing. Data was
acquired using g.tec amplifiers, active EEG electrodes, and elec-
trode cap (Guger Technologies, Graz, Austria) with 32 channels in
an established configuration (Lu et al., 2012; Sharbrough et al.,
1991). The signals were sampled at 256 Hz, referenced to the left
ear, grounded to AFZ, and filtered using a band-pass filter of
.1–60 Hz. The system used a 6 � 6 character grid, row and column
flashes, and an interstimulus interval (ISI) of 125 ms. Subjects
underwent between 8 and 10 trials, each consisting of spelling a
five letter word with 15 sets of 12 flashes (six rows and six
columns) for each letter. The choice of target words for this exper-
iment was independent of the trigram language model used. Gaze
was not fixed or tracked.

The subjects for the online study consisted of 15 healthy volun-
teers with normal or corrected to normal vision between the ages
of 20 and 30. The training sessions for these subjects consisted of
three sessions of copy spelling 10 character phrases. Each subject
then chose a target phrase to spell in online sessions. Subjects then
had either one 5-min (subjects P–U) or two 2-min (subjects V–AD)
online sessions for each of three electrode configurations: the full
32 electrode configuration, the six electrode subset proposed by
Krusienski et al., and the optimal four electrode set found during
offline analysis. Subjects were instructed not to correct errors
and to repeat the phrase if they completed it in under 5 min. The
order of the three online sessions was chosen for each subject
using a random number generator. One volunteer could not partic-
ipate in the study because connection in the occipital electrodes
could not be obtained due to hair thickness.

BCI2000 was used for data acquisition and online analysis
(Schalk et al., 2004). Offline analysis was performed using MATLAB
(version 7.10.0, MathWorks, Inc., Natick, MA).
2.2. Feature selection

For each stimulus, the 32 channel EEG data for the next 600 ms
was decimated by a factor of 12 and concatenated into a feature
vector, zi

t , for use in classifying that stimulus. Stepwise linear dis-
criminant analysis (SWLDA) used a stepwise method to separate
the available features into two groups based on whether the fea-
ture was significant in classification. The probabilities of adding
and removing features were 0.1 and 0.15, respectively. These steps
were repeated until the number of significant features reached a
threshold of 60 features or until the feature groups reached
equilibrium. These significant features were then stored in a
weight vector, w (Krusienski et al., 2006).

During testing, the dot product between the feature vector for
each stimulus and the feature weight vector was taken to
determine a score for that stimulus, yi

t . The means and standard
deviations were then found for the scores for target and non-
target stimuli. Assuming a normal distribution, the probability
density function (PDF) for the likelihood probability were
computed,
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Table 1
Channels and average bit rates for the first six electrode sets, the Krusienski set, and
the full 32 electrode configuration.

Channel
set

Included channels Average
bit rate

Incremental
p value

1 PO8 12.10 <0.001
2 PO8, POZ 20.13 <0.001
3 PO8, POZ, PO7 26.42 <0.001
4 PO8, POZ, PO7, CPZ 28.93 0.003
5 PO8, POZ, PO7, CP1, CP2 29.34 0.079
6 PO8, POZ, PO7, CP1, CP2, FCZ 29.83 0.56

Krusienski PO8, PO7, OZ, PZ, CZ, FZ 29.46 N/A

32 All 31.80 N/A
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where la, r2
a , ln, and r2

n are the means and variances of the distri-
butions for the attended and non-attended scores, respectively, and
Ai

t is the set of characters included in stimulus i for letter t.

2.3. Generating channel sets

Channel sets were found using Gibbs sampling to optimize the
joint probability of the EEG data and the known labels of the offline
data set. Gibbs sampling is a Markov chain Monte Carlo (MCMC)
method for estimating high dimensional distributions by generat-
ing a ‘‘random walk’’ through the state space (Liu, 2001). An initial
configuration of the variables is set randomly along with a set of
transition probabilities to new configurations based on their rela-
tive likelihood. The system then moves randomly through the state
space and the frequency of a given state is proportional to its
probability.

Here, the state of the system is the set of channels included in
analysis. Channel inclusion was represented by a vector of binary
variables, c, where cj ¼ 1 if channel j was used in classification.
The feature weight vector when trained using the data in the chan-
nels indicated by c is represented by wc. Scores are obtained as
before by taking the dot product with the feature vector:

yi
tðcÞ ¼ wc � zi

t

In Gibbs sampling, one variable is chosen, cj, and the remaining,
c�j, are held constant. The chosen variable is then assigned a new
value according to its probability distribution conditioned on the
other variables, c�j, and the known values for the signal, z(s) , and
the targets, x(s), for all subjects s:
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When each stimulus response is treated as independent, the
posterior probability of the known targets can be computed from
the likelihood PDFs:
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Once cj is assigned, another variable is chosen and the process is
repeated. The prior probability p cjjc�j

� �
defines a spatial bias based

on expected features of an optimal configuration. Here, it is
determined by an Ising model which gives reduced weight to
configurations containing adjacent channels, which are likely to
contain redundant information:

p cjjc�j
� �

/ e�b
P

k2nðjÞ
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where n(j) represents the indices of electrodes that are adjacent to
electrode cj in the initial 32 channel configuration.

For each electrode set size, the channel set that occurred most
often in the Gibbs sampling was chosen as optimal. The offline data
set was censored based on each of these configurations and then
evaluated using a naïve Bayes classifier.

2.4. Classification

Classification was performed using a naïve Bayes classifier
which has been described in detail in a prior publication (Speier
et al., 2012). Briefly, we determined the conditional probability of
a target character, xt, given a set of flash scores and the history of
previous decisions (Speier et al., 2012).

p xtjyt; xt�1; . . . ; x0ð Þ / p xt jxt�1; . . . ; x0ð Þ
Y

i

f yi
t jxt

� �

where p xtjxt�1; . . . ; x0ð Þ is the prior probability of a character given
the previous selections and f yi

tjxt
� �

are the PDFs for the likelihood
probabilities. A trigram model was used, where the target character
only depends on the previous two selections (Manning and Schütze,
1999). In this study, prior probabilities for characters were obtained
from frequency statistics in an English language corpus (Francis and
Kucera, 1979). After each stimulus, if the probability for any charac-
ter exceeds a set threshold value, that character is chosen and the
system moves on to the next character in the sequence. Although
the number of flashes was fixed for all trials in the offline study, dif-
ferent selection rates were simulated by limiting the amount of data
available for the classification algorithm. In online trials, the thresh-
old was set to 0.95 for all subjects based on previous experiments
(Speier et al., 2014).

2.5. Evaluation

Evaluation of a BCI system must take into account two factors:
the ability of the system to achieve the desired result and the
amount of time required to reach that result. The efficacy of the
system can be measured as the selection accuracy, which was
defined as the proportion of correct characters in the final output
string. The speed of the system was measured using selection rate
(SR), the average number of selections per minute. In offline anal-
ysis, SR was found by taking the inverse of that average time
required to make a selection. In online trials, the selection rate
was computed by dividing the number of selections by the time
required for those selections. For this analysis, the time was
defined as the period between the start of the trail and the time-
stamp of the final character selected.

As there is a tradeoff between speed and accuracy, we also use
information transfer rate (ITR) (in bits per minute) for evaluation,
which takes both into account. The bits per symbol, B, is a measure
of how much information is transmitted per selection on average
(Pierce, 1980):

B ¼ log2N þ Plog2P þ ð1� PÞlog2
1� P
N � 1

where N is the number of possible characters (36) and P is the selec-
tion accuracy. ITR can then be found by multiplying the selection
rate by the bits per symbol. Friedman tests were used to evaluate
significant differences between different electrode configurations
and Wilcoxon signed-rank tests were used for pairwise compari-
sons and post hoc analysis.

3. Results

3.1. Channel sets

In general, the average bit rate increased with the number of
channels used for classification. Sets of one, two, or three
electrodes produced average offline ITR values of 12.1, 20.1, and
26.4 bits/min respectively (Table 1). These values were all signifi-
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cantly lower than the average performance using a set of four elec-
trodes (PO8, POZ, PO7, CPZ; Table 1). The average bit rate plateaued
with incremental increases after four channels (Fig. 1). Because
increasing the number of electrodes did not provide a significant
improvement in bit rate (p = 0.072) beyond four electrodes, the
optimal four electrode set was selected for comparison against
the six electrode set proposed by Krusienski et al. (2008) and the
full 32 electrode configuration.

The four electrodes in the reduced set all showed strong excit-
atory response potentials (ERP) in response to target stimuli
(Fig. 2). The PO8 and PO7 channels showed a pronounced negative
inflection after a delay of about 200 ms and a smaller positive
inflection after 300 ms. The POZ and CPZ waveforms did not include
the first negative inflection, but showed a higher positive response
after the 300 ms delay. All of the channels showed an oscillatory
component at the stimulus frequency (8 Hz), but it was generally
larger for the occipital electrodes.
3.2. Validation

In offline analysis, the average bit rates for the four channel, six
channel (Krusienski et al., 2008), and 32 channel electrode config-
urations were 28.93, 29.46, and 31.80 bits/min respectively
(Table 2). Both the four and six electrode configurations’ bit rates
were statistically significantly lower than the full 32 electrode con-
figuration (p = 0.004 and p = 0.021 respectively), but the differ-
ences were relatively small (9.0% and 7.4%, respectively). In
online testing, subjects achieved average bit rates of 20.83, 20.91,
and 21.67 using the four, six, and 32 electrode configurations
respectively (Table 3). No significant difference was found between
subjects’ results when using the three electrode configurations
(p = 0.92).
4. Discussion

Using Gibbs sampling, the number of electrodes required for an
EEG-based BCI system can be reduced without significantly com-
promising information transfer. The application of this novel meth-
odology to identify and validate a reduced electrode set within a
subject population provides a potentially important resource for
optimizing system design and performance in target populations.
While the methodology is evaluated using a specific application
(P300 speller) in a specific population (able-bodied subjects), the
current methodology is agnostic to application or population.
Fig. 1. Individual (dashed) and overall average (solid) bit rates for the 15
4.1. Methodological validation in sample population

In the population studied, users achieved comparable bit rates
using the four electrode configuration as with the six electrode
Krusienski set as well as the full set of 32 electrodes in both on
and offline analysis. In the retrospective offline exploratory study,
the difference between the four electrode set and the full set was
statistically significant, but the results using the four electrode
set were sufficient to make the system clinically viable. In prospec-
tive online validation analyses, no significant difference was found
between the results using these configurations, further indicating
the potential power of this new methodology to identify a reduced
electrode set without loss of information.

The optimal four electrode configuration found in our test pop-
ulation was consistent with previously published channel sets for
healthy subjects. Methods that chose subject-specific sets of elec-
trodes showed a high variability, but generally favored occipital
and parietal electrodes, which was consistent with the coverage
of our reduced set. The three most common electrodes chosen by
Colwell et al. (2014), PO8, POZ, and PO8, completely overlapped
with our four electrode set. Cecotti et al. (2011) and Xu et al.
(2013) commonly included P8, PZ, and P7, which were the closest
available locations to those that we found most effective. The
empirically derived configurations proposed by Kaper et al.
(2004), Krusienski et al. (2008), and Hoffmann et al. (2008) all
included either PO7 and PO8 or P7 and P8. All three empirical sets
also included four midline electrodes: FZ, CZ, PZ, and OZ which,
while disjoint from the reduced set proposed here, are in close
proximity to two of the electrodes (POZ and CPZ) and are likely to
capture similar information.

In general, the true optimal electrode configuration may vary
between subjects. However, it is also likely that it varies between
sessions based on the state of the user and his or her environment.
Variability can also arise from the setup as electrodes need to be
reconnected for each use and the exact location and strength of
the connection will not be completely constant. As a result, any
study that attempts to find a subject-specific configuration must
use multiple sessions in order to verify that they are truly finding
variation between subject rather than session. Also, prospective
tests using a fixed configuration are necessary to show that results
using the configuration are reproducible.

In general, subjects realized a decrease in accuracy when using
the system in online trials using each montage, resulting in average
accuracies (73.21%, 69.28%, and 67.57%) that were lower than
those published by several previous studies. The low accuracy in
this study is largely a result of the speed/accuracy tradeoff inherent
subjects in offline analysis versus the size of the electrode set used.



Fig. 2. Grand average EEG responses for attended (solid) and nonattended (dashed) stimuli for channels PO8 (a), PO7 (b), POZ (c), and CPZ (d).

Table 2
Optimal selection rates, accuracies, and bit rates for the 15 subjects after optimizing on ITR in offline analysis.

Subject SR (sel/min) ACC (%) ITR (bits/min)

4 6 32 4 6 32 4 6 32

A 8.44 7.74 9.26 93.33 100.00 95.56 40.29 39.99 43.33
B 5.90 6.46 7.42 91.11 80.00 82.22 26.39 22.12 26.58
C 4.15 6.43 6.09 72.50 72.50 82.50 19.43 18.70 21.96
D 8.96 10.84 10.94 100.00 95.56 93.33 49.34 50.74 48.94
E 4.56 8.73 6.22 93.33 68.89 86.67 21.55 23.41 24.38
F 7.62 8.16 9.96 91.11 95.56 88.89 34.49 38.20 40.80
G 5.52 6.12 8.19 92.00 98.00 84.00 25.98 30.14 30.42
H 8.71 9.99 10.19 96.00 90.00 92.00 42.86 41.83 44.39
I 4.93 6.17 6.72 94.00 94.00 88.00 27.77 27.97 27.06
J 4.48 6.68 5.74 86.00 82.00 96.00 19.33 23.82 27.09
K 4.78 8.07 6.50 80.00 66.00 88.00 20.77 20.19 26.16
L 6.52 7.32 8.07 90.00 88.00 84.00 29.18 29.48 29.98
M 5.10 7.54 8.59 78.00 72.00 70.00 19.18 21.71 23.63
N 7.56 8.57 9.17 98.00 94.00 90.00 37.24 38.87 38.39
O 4.21 7.30 7.12 90.00 74.00 82.00 20.08 21.96 25.38

Average 6.10 7.74 8.01 89.69 84.70 86.88 28.92 29.94 31.90
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Table 3
Online selection rates, accuracies, and bit rates for the 15 subjects using the four, six, and 32 electrode configurations.

Subject SR (sel/min) ACC (%) ITR (bits/min)

4 6 32 4 6 32 4 6 32

P 6.84 7.44 9.90 41.18 56.76 68.75 8.03 14.62 26.45
Q 8.80 8.59 8.13 87.36 82.93 75.00 34.98 31.23 25.01
R 7.32 5.08 10.33 100.00 88.00 91.11 37.82 20.44 44.23
S 6.88 8.76 8.32 70.59 62.79 43.90 19.17 20.23 10.84
T 3.35 2.66 5.95 75.00 15.38 72.41 10.31 0.56 17.30
U 3.21 4.51 6.67 62.50 68.18 18.18 7.35 11.90 1.93
V 3.46 3.52 3.87 46.15 30.77 40.00 4.88 2.56 4.35
W 4.83 5.21 6.69 41.18 57.89 68.18 5.67 10.57 17.62
X 5.49 6.76 6.04 100.00 88.00 75.00 28.40 27.19 18.59
Y 4.46 3.99 4.80 58.82 60.00 61.11 9.28 8.57 10.61
Z 5.46 8.20 6.65 80.95 87.50 64.00 19.05 32.70 15.83
AA 10.21 9.98 8.66 89.74 81.58 94.12 42.55 35.30 39.37
AB 8.98 9.94 10.26 75.00 86.96 85.42 27.64 39.19 39.21
AC 9.53 11.03 10.33 88.89 76.74 75.61 39.05 35.22 32.20
AD 5.27 4.99 6.17 80.77 95.65 80.77 18.33 23.39 21.44

Average 6.27 6.71 7.52 73.21 69.28 67.57 20.83 20.91 21.67
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in the P300 speller as increasing the number of stimuli presented
to the user will generally increase accuracy and reduce system
speed. For instance, a study by Guger et al. (2009) showed an aver-
age accuracy of 91%, but provided stimuli for a single character for
28.8 s, resulting in an average typing speed of 2.1 characters per
minute and an average bit rate of 8.9 bits/min. Using the naïve
Bayes algorithm, subjects in this study were typing at speeds
between 6 and 7 characters per minute, resulting in an average
bit rate over twice that of the Guger study. While the accuracies
that subjects achieved may not be practical for patients, using a
higher confidence threshold can increase the accuracy at the
expense of speed. It was not practical to optimize this threshold
for all subjects and all channel configurations in this study, so a
constant value of 0.95 was used across all trials.

Another factor contributing to decreased performance during
online trials is likely that subjects were not allowed to correct
errors. When an incorrect selection is made using the naïve Bayes
method, the wrong characters are used for computing the prior
probability for subsequent selections, resulting in additional
errors. As a result, the selection rate is relatively unaffected, but
the accuracy decreases. A similar decrease in accuracy was
previously shown in online implementations of the naïve Bayes
algorithm without error correction, which could be addressed
either by allowing the user to make corrections, or by implement-
ing an algorithm that can automatically correct errors (Ryan et al.,
2011; Speier et al., 2014).
4.2. Clinical and practical implications

While the current analysis is done in healthy subjects, the
validation of this method provides an important opportunity to
reduce the number of channels and therefore the usability of the
system in a target patient population. Fewer electrodes translate
into faster setup time, which addresses one concern expressed in
a survey of locked-in patients (Huggins et al., 2011). Reducing
the number of channels also makes the system more cost effective
by requiring fewer amplifier channels, which provides not only
hardware cost savings but also decreased configuration and main-
tenance demands. Because patients with fixed gaze have trouble
with the traditional P300 speller system (McCane et al., 2014),
reducing the number of electrodes can also improve accuracy by
allowing for more complex analysis methods. Unsupervised
training and adaptive classifiers, for instance, could also allow for
automatic adaptation to disease progression such as the loss of
eye gaze control (Kindermans et al., 2012; Speier et al., 2013b).
4.3. Limitations and future directions

While the optimization method is general, the results are
dependent upon the software, equipment, classifier, and system
configuration used to collect the dataset. The electrode sets found
using this method are therefore not necessarily robust across
sites, implementations, or populations. For example, this study
has used the row–column flashing paradigm, while the checker-
board paradigm has recently become widely used (Townsend
et al., 2010). While both systems rely on the same neurological
paradigm, it is possible that the distribution of features is not
identical and therefore would have a different optimal electrode
configuration. Also, when selecting the best electrodes locations,
only locations that lie within the initial configuration can be
candidates. Thus, any location that was not in the initial set of
32 channels will not appear in the final set, regardless of its value
in classification.

Existing electrode montages have been shown to translate
poorly into situations where a user’s eye gaze is limited (Brunner
et al., 2010). The application presented here on a population of
healthy subjects is likely to have some of the same issues, as all
subjects had gaze control. The Gibbs sampling method, however,
is agnostic to the patient state and could be applied to find an
electrode montage that works optimally in patient populations
with fixed gaze. In long term implementations, it would likely be
superior to existing patient-specific optimization methods as its
goal is to optimize across patient state and would therefore be
more robust to disease progression such as the loss of eye gaze
control. This method can also be applied to other BCI systems as
well as systems using other signal acquisition paradigms such as
subdural electrodes for invasive P300 systems (Speier et al.,
2013a).
4.4. Conclusion

This work presented a methodology for fining optimal electrode
montages across a user population. Using this method in a popula-
tion of healthy subjects, a four electrode configuration (PO8, POZ,
PO7, CPZ) is proposed which is shown to produce comparable
results to a traditional 32 electrode configuration in online testing.
Reducing the number of channels reduces the system’s set-up
time, hardware requirements for end users, and computation
requirements for classification. These improvements can help to
make the P300 speller system a more viable solution for locked-
in patients.



W. Speier et al. / Clinical Neurophysiology 126 (2015) 1171–1177 1177
Acknowledgements

This work was supported by the NIH/NIBIB Medical Imaging
Informatics Training Grant T32 EB016640 (WS), the National
Institute of Biomedical Imaging and Bioengineering Award
Number K23EB014326 (NP), and the UCLA Scholars in Transla-
tional Medicine Program (NP).

Conflicts of interest: None of the authors have potential conflicts
of interest to be disclosed.
References

Baxter S, Enderby P, Evans P, Judge S. Barriers and facilitators to the use of high-
technology augmentative and alternative communication devices: a systematic
review and qualitative synthesis. Lang Commun Disord 2012;47:115–29.

Brunner P, Joshi S, Briskin S, Wolpaw J, Bischof H, Schalk G. Does the ‘P300’ speller
depend on eye gaze? J Neural Eng 2010;7:056013.

Cecotti H, Rivet B, Congedo M, Jutten C, Bertrand O, Maby E, et al. A robust sensor-
selection method for P300 brain–computer interfaces. J Neural Eng
2011;8:016001.

Colwell KA, Ryan DB, Throckmorton CS, Sellers EW, Collins LM. Channel selection
methods for the P300 speller. J Neurosci Methods 2014;232C:6–15.

Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis
utilizing event-related brain potentials. Electroenceph Clin Neurophysiol
1988;70:510–23.

Francis W, Kucera H. Brown corpus manual; 1979.
Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalona R, et al. How many

people are able to control a P300-based brain–computer interface (BCI)?
Neurosci Lett 2009;462:94–8.

Hoffmann U, Vesin JM, Ebrahimi T, Diserens K. An efficient P300-based brain–
computer interface for disabled subjects. J Neurosci Methods 2008;167:115–25.

Huggins JE, Wren PA, Gruis KL. What would brain–computer interface users want?
Opinions and priorities of potential users with amyotrophic lateral sclerosis.
Amyotroph Lateral Scler 2011;12:319–24.

Jin J, Horki P, Brunner C, Wang X, Neuper C, Pfurtscheller G. A new P300 stimulus
presentation pattern for EEG-based spelling systems. Biomed Tech
2010;55:203–10.

Kaper M, Meinicke P, Grossekathoefer U, Lingner T, Ritter H. BCI competition 2003—
data set IIb: support vector machines for the P300 speller paradigm. IEEE Trans
Biomed Eng 2004;51:1073–6.

Kindermans P, Verschore H, Verstaeten D, Schrauwen B. A P300 BCI for the masses:
prior information enables instant unsupervised spelling. Adv Neural Inf Process
Syst 2012;25:719–27.
Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh S, McFarland DJ, Vaughan TM, et al.
A comparison of classification techniques for the P300 speller. J Neural Eng
2006;3:299–305.

Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw JR. Toward
enhanced P300 speller performance. J Neurosci Methods 2008;167:15–21.

Liu J. Monte Carlo strategies in scientific computing. New York: Springer; 2001.
Lu J, Speier W, Hu X, Pouratian N. The effects of stimulus timing features on P300

speller performance. Clin Neurophysiol 2012;124:306–14.
Manning C, Schütze H. Foundations of statistical natural language

processing. Cambridge, MA: MIT Press; 1999.
McCane L, Sellers E, McFarland D, Mak J, Carmack C, Zeitlin D, et al. Brain–computer

interface (BCI) evaluation in people with amyotrophic lateral sclerosis.
Amyotroph Lateral Scler 2014;15:207–15.

McFarland DJ, Sarnacki WA, Townsend G, Vaughan T, Wolpaw JR. The P300-based
brain computer interface (BCI): effects of stimulus rate. Clin Neurophysiol
2011;122:731–7.

Park J, Kim KE. A POMDP approach to optimizing P300 speller BCI paradigm. IEEE
Trans Neural Syst Rehabil Eng 2012;20:584–94.

Pierce J. An introduction to information theory. New York: Dover; 1980.
Ryan DB, Frye GE, Townsend G, Berry DR, Mesa-G S, Gates NA, et al. Predictive

spelling with a P300-based brain–computer interface: increasing the rate of
communication. Int J Hum Comput Interact 2011;27:69–84.

Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: a
general-purpose brain–computer interface (BCI) system. IEEE Trans Biomed Eng
2004;51:1034–43.

Serby H, Yom-Tov E, Inbar GF. An improved P300-based brain–computer interface.
IEEE Trans Neural Syst Rehabil Eng 2005;13:89–98.

Sharbrough F, Chatrian GE, Lesser RP, Lüders H, Nuwer M, Picton TW. AEEGS
guidelines for standard electrode position nomenclature. Clin Neurophysiol
1991;8:202–4.

Speier W, Arnold C, Lu J, Taira RK, Pouratian N. Natural language processing with
dynamic classification improves P300 speller accuracy and bit rate. J Neural Eng
2012;9:016004.

Speier W, Fried I, Pouratian N. Improved P300 speller performance using
electrocorticography, spectral features, and natural language processing. Clin
Neurophysiol 2013a;124:1321–8.

Speier W, Knall J, Pouratian N. Unsupervised training of brain–computer interface
systems using expectation maximization. Int IEEE EMBS Conf Neural Eng
2013:707–10. http://dx.doi.org/10.1109/NER.2013.6696032.

Speier W, Arnold C, Lu J, Deshpande A, Pouratian N. Integrating language
information with a hidden Markov model to improve communication rate in
the P300 speller. IEEE Trans Neural Syst Rehabil Eng 2014;22:678–84.

Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser CK, et al. A novel
P300-based brain–computer interface stimulus presentation paradigm: moving
beyond rows and columns. Clin Neurophysiol 2010;121:1109–20.

Xu M, Qi H, Ma L, Sun C, Zhang L, Wan B, et al. Channel selection based on phase
measurement in P300-based brain–computer interface. PLoS One
2013;8:e60608.

http://refhub.elsevier.com/S1388-2457(14)00506-9/h0005
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0005
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0005
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0010
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0010
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0015
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0015
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0015
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0020
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0020
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0025
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0025
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0025
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0035
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0035
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0035
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0040
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0040
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0045
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0045
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0045
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0050
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0050
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0050
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0055
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0055
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0055
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0060
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0060
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0060
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0065
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0065
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0065
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0070
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0070
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0075
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0080
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0080
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0085
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0085
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0090
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0090
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0090
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0095
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0095
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0095
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0100
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0100
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0105
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0110
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0110
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0110
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0115
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0115
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0115
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0120
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0120
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0125
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0125
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0125
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0130
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0130
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0130
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0135
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0135
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0135
http://dx.doi.org/10.1109/NER.2013.6696032
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0145
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0145
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0145
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0150
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0150
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0150
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0155
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0155
http://refhub.elsevier.com/S1388-2457(14)00506-9/h0155

	A method for optimizing EEG electrode number and configuration  for signal acquisition in P300 speller systems
	Introduction
	Methods
	Data collection
	Feature selection
	Generating channel sets
	Classification
	Evaluation

	Results
	Channel sets
	Validation

	Discussion
	Methodological validation in sample population
	Clinical and practical implications
	Limitations and future directions
	Conclusion

	Acknowledgements
	References


