2016 Publications

  • Sarma KV, Zhong X, Ho KC, Margolis DJA, Raman S, Scalzo F, Sung KH, Tan N, Arnold CW. Development of a Deep Learning Model for the Detection of Prostate Cancer using MRI. Gordon Research Conference in Advanced Health Informatics. Hong Kong; 2016.

  • Morioka C, Meng F, Taira R, Sayre J, Zimmerman P, Ishimitsu D, Huang J, Shen L, El-Saden S. Automatic Classification of Ultrasound Screening Examinations of the Abdominal Aorta. J Digit Imaging. 2016 Dec;29(6):742-748. doi: 10.1007/s10278-016-9889-6. PMID: 27400914; PMCID: PMC5114229.

  • Alaa A, Moon K, Hsu W, Schaar M van der. ConfidentCare: A clinical decision support system for personalized breast cancer screening. IEEE Transactions on Multimedia [Internet]. 2016;18(10):1942–55. DOI: http://dx.doi.org/10.1016/j.juro.2016.02.502.
  • Garcia-Gathright JI, Matiasz NJ, Garon EB, Aberle DR, Taira RK, Bui AAT. Toward patient-tailored summarization of lung cancer literature. IEEE EMBS Int Conf Biomed Health Inform. 2016 Feb;2016:449-452. DOI: 10.1109/BHI.2016.7455931. Epub 2016 Apr 21. PMID: 28721401; PMCID: PMC5511748.
  • Habre R, Ambite JL, Bui AAT, Cummins MR, Dellarco M, Eckel SP, Gouripeddi R, Gillil F, Sward KA. Pediatric Research using Inte-grated Sensor Monitoring Systems (PRISMS): Data Modeling Working Group. Intl Soc Exposure Science (ISES) Annual Meeting, 2016. Utrecht, The Netherlands; 2016.
  • Habre R, King CE, Eckel SP, Sarrafzadeh M, Gilliland F, Bui AAT. The Los Angeles Pediatric Research using Integrated Sensor Monitoring Systems (LA PRISMS) Center:Biomedical REAl-Time Health Evaluation (BREATHE). Intl Soc Exposure Science (ISES) Annual Meeting, 2016. Utrecht, The Netherlands; 2016.
  • Ho KC, El-Saden S, Scalzo F, Bui AAT, Arnold CW. Abstract WP41: Predicting Acute Ischemic Stroke Tissue Fate Using Deep Learning on Source Perfusion MRI. Stroke. 2016;47.
  • Ho KC, Scalzo F, Sarma KV, El-Saden S, Arnold CW. A Temporal Deep Learning Approach for MR Perfusion Parameter Estimation in Stroke. 23rd International Conference on Pattern Recognition. Cancun; 2016.
  • Ho KC, Scalzo F, Sarma KV, El-Saden S, Bui AAT, Arnold CW. A Novel Bi-Input Convolutional Neural Network for Deconvolution-Free Estimation of Stroke MR Perfusion Parameters. 2016 Annual Meeting of the Radiological Society of North America. Chicago, IL; 2016.
  • Hsu W, El-Saden S, Taira RK. Medical Imaging Informatics. In: Shen B, Tang H, Jiang X, editors. Translational Biomedical Informatics: A Precision Medicine Perspective. Singapore: Springer; 2016.
  • Hsu W, Maehara CK, Andrada LP, Beckett KR, McWilliams JP, Moriarty JM, Enzmann DR. Using Time-Driven Activity Based Costing (TDABC) to characterize cost variability in interventional radiology procedures. 2016 Annual Meeting of the Radiological Society of North America. Chicago, IL; 2016.
  • Jann K, Smith RX, Rios Piedra EAR, Dapretto M, Wang DJ. Noise Reduction in Arterial Spin Labeling Based Functional Connectivity Using Nuisance Variables. Front Neurosci. 2016 Aug 23;10:371. DOI: 10.3389/fnins.2016.00371. PMID: 27601973; PMCID: PMC4993769.
  • Matiasz NJ, Chen W-T, Silva AJ, Hsu W. MedicineMaps: A tool for mapping and linking evidence from experimental and clinical trial literature. AMIA Annu Symp Proc. Chicago, IL; 2016. PDF
  • Matiasz NJ, Wood J, Hsu W, Silva AJ. ResearchMaps.org: A free web app for integrating and planning experiments. Proceedings of the 15th Annual Molecular and Cellular Cognition Society (MCCS) Symposium. San Diego; 2016. PDF
  • Nguyen T-L, Winter A, Spence J, Leguelinel-Blache G, Landais P, Le Manach Y. Causal Inference in Anesthesia and Perioperative Observational Studies. Current Anesthesiology Reports. Springer; 2016;6(3):293–298. PDF
  • Pan P, Huang J, Morioka C, Hathout G, El-Saden SM. Cost analysis of vestibular schwannoma screening with contrast-enhanced magnetic resonance imaging in patients with asymmetrical hearing loss. J Laryngol Otol. 2016 Jan;130(1):21-4. doi: 10.1017/S0022215115002431. Epub 2015 Sep 14. PMID: 26365591.
  • Panigrahi B, Hollada J, Speier W, Harvey S. Innovations in decreasing recall rates for screening mammography. SBI/ACR Breat Imaging Symposium. 2016.
  • Petousis P, Han SX, Aberle DR, Bui AAT. Prediction of lung cancer incidence on the low-dose computed tomography arm of the National Lung Screening Trial: A dynamic Bayesian network. Artif Intell Med. 2016 Sep;72:42-55. DOI: 10.1016/j.artmed.2016.07.001. Epub 2016 Jul 27. PMID: 27664507; PMCID: PMC5082434.PDF
  • Rios Piedra EAR, Ho KC, Taira RK, El-Saden S, Ellingson B, Bui AAT, Hsu W. Glioblastoma Multiforme Segmentation by Variability Characterization of Tumor Boundaries. Medical Image Computing and Computer Assisted Intervention Society (MICCAI), MICCAI-BRATS Conference Workshop. 2016.
  • Rios Piedra EAR, Taira RK, El-Saden S, Ellingson B, Bui AAT, Hsu W. GlioView: An Application to Visualize Variability in Brain Tumor Segmentation to Inform the Clinical Assessment of Change. Applied science presentation at Radiological Society of North America (RSNA). 2016.
  • Rios Piedra EAR, Taira RK, El-Saden S, Ellingson BM, Bui AAT, Hsu W. Assessing Variability in Brain Tumor Segmentation to Improve Volumetric Accuracy and Characterization of Change. IEEE EMBS Int Conf Biomed Health Inform. 2016 Feb;2016:380-383. DOI: 10.1109/BHI.2016.7455914. Epub 2016 Apr 21. PMID: 28670648; PMCID: PMC5489257.
  • Rios Piedra EAR, Taira RK, El-Saden S, Ellingson BM, Bui AAT, Hsu W. Assessing Variability in Brain Tumor Segmentation to Improve Volumetric Accuracy and Characterization of Change. IEEE EMBS Int Conf Biomed Health Inform. 2016 Feb;2016:380-383. DOI: 10.1109/BHI.2016.7455914. Epub 2016 Apr 21. PMID: 28670648; PMCID: PMC5489257.
  • Rios Piedra EAR, Taira RK, El-Saden S, Ellingson BM, Bui AAT, Hsu W. GlioView: An application that visualizes variability in brain tumor segmentation to inform the clinical assessment of change. 2016 Annual Meeting of the Radiological Society of North America. Chicago, IL; 2016.
  • Sarma KV, Zhong X, Ho KC, Margolis DJA, Raman S, Scalzo F, Sung KH, Tan N, Arnold CW. An Investigational Patch-based Convolutional Neural Network Model for the Detection of Clinically Significant Prostate Cancer using Multiparametric MRI. 2016 Annual Meeting of the Radiological Society of North America. Chicago, IL; 2016.
  • Shen S, Zhong X, Hsu W, Bui AAT, Wu H, Kuo M, Raman S, Margolis DJA, Sung KH. Quantitative MRI-Driven Deep Learning for Detection of Clinical Significant Prostate Cancer. 24th Intl Soc Magnetic Resonance in Medicine (ISMRM) Annual Meeting. Singapore; 2016.
  • Speier W, Arnold CW, Pouratian N. Integrating language models into classifiers for BCI communication: a review. J Neural Eng. 2016 Jun;13(3):031002. DOI: 10.1088/1741-2560/13/3/031002. Epub 2016 May 6. PMID: 27153565; PMCID: PMC5495144.
  • Speier W, Chandravadia N, Pouratian N. Online BCI Typing using Language Models by ALS Patients in their Homes. International Brain-Computer Interface (BCI) Meeting. 2016.
  • Speier W, Ong MK, Arnold CW. Using phrases and document metadata to improve topic modeling of clinical reports. J Biomed Inform. 2016 Jun;61:260-6. DOI: 10.1016/j.jbi.2016.04.005. Epub 2016 Apr 21. PMID: 27109931; PMCID: PMC4902330.
  • Sward KA, Bui AAT, Ambite JL, Dellarco M. Pediatric Research using Integrated Sensor Monitoring Systems (PRISMS): Applying sensor technology and informatics to better understand asthma. Proceedings of the 2016 American Medical Informatics Association Annual Symposium. Washington, D.C.; 2016. PDF
  • Tong M, Hsu W, Taira RK. A visualization for clinical trial reports: A usability study. AMIA Annu Symp Proc. Chicago, IL; 2016.
  • Wibulpolprasert P, Raman SS, Khoshnoodi P, Yu W, Hsu W, Tan N, Huang J, Lu D, Margolis DJ, Reiter R. MP53-05 Performance of 3T multiparameteric MRI in diagnosis of prostate cancer in comparison with whole mount histopathology: A 5 year experience. Urology [Internet]. 2016;195(4):e698. DOI: http://dx.doi.org/10.1016/j.juro.2016.02.502.
  • Winter A, Féray C, Jean-Pierre, Landais P. Survival benefit in liver transplantation by categories of severity scores using the Model For End-Stage Liver Disease (MELD) and the Donor Risk Index (DRI). ISCB. Birmingham, England; 2016.
  • Young S, Lo P, Hoffman J, Kim H, Hsu W, Flores C, Lee G, Brown M, McNitt-Gray M. CAD performance on a large cohort of National Lung Screening Trial patients at screening and sub-screening doses. 2016 Annual Meeting of the Radiological Society of North America. Chicago, IL; 2016.
  • Zaghi S, Alonso J, Orestes M, Kadin N, Hsu W, Berke G. Idiopathic Subglottic Stenosis: A Comparison of Tracheal Size. Ann Otol Rhinol Laryngol. 2016 Aug;125(8):622-6. DOI: 10.1177/0003489416642783. Epub 2016 Apr 11. PMID: 27067154.