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Abstract—With the appearance of massively parallel and 

inexpensive platforms such as the G80 generation of NVIDIA 

GPUs, more real-life applications will be designed or ported to 

these platforms. This requires structured transformation 

methods that remove existing application bottlenecks in these 

platforms. Balancing the usage of on-chip resources, used for 

improving the application performance, in these platforms is 

often non-intuitive and some applications will run into resource 

limits.  In this paper, we present a memory optimization 

technique for the software-managed scratchpad memory in the 

G80 architecture to alleviate the constraints of using the 

scratchpad memory. We propose a memory optimization scheme 

that minimizes the usage of memory space by discovering the 

chances of memory reuse with the goal of maximizing the 

application performance. Our solution is based on graph 

coloring. We evaluated our memory optimization scheme by a set 

of experiments on an image processing benchmark suite in 

medical imaging domain using NVIDIA Quadro FX 5600 and 

CUDA. Implementations based on our proposed memory 

optimization scheme showed up to 37% decrease in execution 

time comparing to their naïve GPU implementations. 
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I.  INTRODUCTION 

Traditional single-core microprocessors have driven rapid 
performance increase in two decades. However, constraints on 
power consumption slowed this progress, which have forced 
CPU vendors to find other ways to meet high performance 
computing needs in science and engineering. One solution is 
that of multi-core architectures, which are moving towards 
integrating tens or hundreds of cores onto a single chip – 
termed as many-core. Many-core processors can offer higher 
performance or power efficiency compared to current CPU or 

multi-core processors [1].  

One example of commodity many-core processors is the 
current programmable graphics processing units (GPUs) such 
as AMDR580 with CTM [2] as their compute runtime driver or 
NVIDIA G80 GPU’s with CUDA [3] as their programming 
model, and the future Intel Larrabee [4]. Current GPUs have 
hundreds of processor cores and high memory bandwidth. For 
example, G80 consists of 16 Streaming Multiprocessors (SMs), 
each with eight Streaming Processors (SPs), 8096 registers, 
and 16 KB of on-chip memory per SM. The architecture allows 
efficient data sharing and synchronization among threads in the 
same thread block [5]. More comprehensive descriptions of the 

NVIDIA architecture are found in [3, 5, 16]. 

 Processing power of GPUs has been successfully exploited 
in the GPGPU domain, especially in scientific, imaging and 
database applications. However, increasing the application 

performance in such architectures is not a trivial task.  

Modern high-performance computer architectures have 
increasing number of on-chip processing elements. Architects 
must ensure that memory bandwidth and latency are also 
optimized to exploit the full benefits of the available 
computational resources. Utilizing cache hierarchy has been the 
traditional way to alleviate the memory bottleneck [6]. In 
contrast, various modern parallel architectures such as NVIDIA 
G80 [5] and IBM Cell [28] utilize fast explicitly managed on-
chip memories, often referred to as scratchpad memories, in 
addition to slower off-chip memory in the system to hide the 
memory latencies [6]. Scratchpad memories are limited in size 
since minimization of on-chip memories is important in 

reduction of manufacturing cost [7].  

The introduction of the IBM Cell processor with software-
managed per-core memory (local store) led to the development 
of techniques for utilizing that memory. However, because of 
the architectural differences between Cell processor and 
NVIDIA G80, management of the software-managed on-chip 
memory (shared memory) in NVIDIA G80 architecture has to 
be specifically studied, and the effect of imposed overheads has 
to be evaluated based on the architectural organization of G80. 
In the NVIDIA G80 architecture, shared memory is partitioned 
among up to 512 thread blocks that are assigned to the same 
multiprocessor at run-time. The data in shared memory can be 
shared among all threads in a thread block, enabling inter-
thread data reuse. This is in contrast to single thread access to 
Cell’s local store. Moreover, in G80, an incremental increase in 
the usage of shared memory per thread can result in a 
substantial decrease in the number of threads that can be 
simultaneously executed and thus significantly reducing the 
parallelism. Current G80 architecture offers limited resources 
(e.g. shared memory) available to each multiprocessor, and 
conversely, demand for availability of massive number of 
threads to achieve maximum performance. The limited size of 
fast-access shared memory available to each multiprocessor 
and its considerable impact on reducing the parallelism 
motivates us to develop a method to minimize the usage of 
shared on-chip memory space in G80. This method should 
specifically be designed for the properties of the shared 

memory within the G80 architecture.  

Main results: In response to this challenge, we propose a 
memory optimization method, which assists in increasing 
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parallelism in applications with high data dependencies by 
minimizing the usage of shared on-chip memory (scratchpad 
memory) and increasing each multiprocessor’s utilization 
(occupancy) in the G80 architecture. We conducted a set of 
experiments on our image processing benchmark suite in 
medical imaging domain as a source for real-life and data-

intensive applications.  

The work we presented in this paper demonstrates the 
promising result of having such an optimization scheme in the 
NVIDIA G80 architecture, based on experimental results on 
our image processing benchmark suite consisting of real-life 
and data-intensive applications. Our intent is to form the 
proposed memory optimization technique as automatic 

transformations for this platform.  

Organization: The remainder of this paper is organized as 
follows. We first discuss related work in Section II. In Section 
III, we present our motivations for memory optimization for 
scratchpad memory in the NVIDIA G80 architecture, and 
propose our solution for the memory optimization scheme.  
Then we evaluate our method by a set of experiments on an 
image processing benchmark suite in medical imaging domain 
in Section IV. Finally, we present some concluding remarks 

and suggestions for future work in Section V. 

II. RELATED WORK 

Historically, a motivation for the development of data-
parallel languages is strongly related with Single Instruction 
Multiple Data (SIMD) computer architectures. Data-parallel 
languages such as OpenMP [8] are explicit parallel 
programming model to support parallel computing. Fortran 90 
[9] was one of the most widely used data-parallel languages 
that provide constructs for specifying concurrent execution 
based on data-parallelism. HPF [10] extends FORTRAN 90 
with additional parallel constructs and data placement 
directives. HPF was introduced as a standard data-parallel 
language to support programs with SPMD. Message passing 
libraries such as MPI [11] also became a popular programming 
model for scalable parallel systems. Intel Ct [12] is a 
programming model developed by Intel to ease the exploitation 
of its future multi-core chips. It is based on the exploitation of 

SIMD to produce automatically parallelized programs. 

The interest in GPU programming for general-purpose 
computations has been driven by relatively recent 
improvements in the programmability and flexibility of 
graphics hardware. CUDA [3] from NVIDIA, by increasing the 
flexibility and programmability of GPU’s has improved their 
suitability for high-performance computing. A programming 
interface alternative to CUDA is available for AMD Stream 
Processor, using the R580 GPU, in the form of the Close to 
Metal (CTM) [2] compute runtime driver which, completely 
exposes ISA to the programmer; thus providing fine-grained 
control. Intel’s C for Heterogeneous Integration (CHI) 
programming environment [13] extends the OpenMP pragma 
for heterogeneous multithreading programming that tightly 
couples specialized accelerator cores with general-purpose 

CPU cores.   

The challenges in the GPGPU community have revolved 
around the constraints of the programming environment and 

optimal mapping of applications so to best leverage the highly 
parallel GPU architecture. There have been several attempts in 
introducing structured methods and models for optimizing 
applications for maximum performance in this domain. Ryoo et 
al, present metrics to judge the performance of an optimization 
configuration based on first-factors of performance [14].  In 
this work, these optimization metrics are used to prune many 
optimization configurations; and therefore reducing the 
optimization space up to 98% without missing the 
configuration yielding best performance. Govindaraju et al, 
present a memory model in [15] for analyzing and improving 
the performance of scientific algorithms on graphic processors. 
Their model is based on texturing hardware and incorporates 
several characteristics of GPU architectures. There has been 
few comprehensive performance studies conducted in [16, 17]. 
[16] studied the performance of a broad range of applications 
and presents general principles for optimizing applications for 
this type of architecture. [17] also provides an application study 
of diverse applications and discusses advantages and 
inefficiencies of the CUDA programming model and some 
desirable features that might allow for more readily support a 

larger body of applications. 

There have been several structures proposed in different 
programming languages deploying memory reuse approaches.  
The approach in [18] uses array transformations on data and 
shows that constraints on memory allocation functions can be 
formulated as one or more ILP problems. Our memory 
optimization technique is most similar to that of [7] that uses 
pointer analysis and graph coloring for discovering the chances 
of memory sharing, incorporated in a behavioral synthesis tool 
that synthesizes sequential C programs. However, the focus of 
this work is only sequential programs. In [30] a scratchpad 
overlay technique for low power embedded processors is 
presented which analyzes the application and inserts 
instructions to dynamically copy both variables and code 
segments onto the scratchpad at runtime. This problem is also 
an extension of the global register allocation problem. 
Additionally, graph coloring has also been used for optimizing 
utilization of stream register files in stream processors [19]. 
Our memory optimization technique is designed particularly 
for an architecture in which scratchpad memories are shared 
among a large number threads, which require us to adopt a 
reuse pattern to reuse the data that is shared among all threads 
in a thread block. In general, our memory optimization 
technique employs similar approaches from register allocation 
domain [20] that have been previously studied and proved to be 

practical.  

III. MEMORY OPTIMIZATION 

Global memory bandwidth can limit the throughput of the 
system as described in Section 1. In G80, alleviating the 
pressure on global memory bandwidth generally involves using 
additional registers and shared memory to reuse data, which in 
turn can limit the number of simultaneously executing threads. 
Balancing the usage of these resources is often non-intuitive 
and some applications will run into resource limits. This 
section presents a memory optimization technique in the G80 
architecture to further alleviate the constraints of using shared 

memory for data-intensive applications in the G80 architecture. 
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Data-intensive applications that have high usage of shared 
memory in their CUDA implementations are limited by low 
SM occupancy when ported to the G80 architecture. In the 
G80, as each thread’s resource usage (e.g. shared memory and 
register count) increases, the total number of threads that can 
occupy the SM decreases, which results in reduction of SM 
occupancy that results in significant performance loss. 
Occasionally this decrease in thread count occurs in a dramatic 
fashion because threads are assigned to an SM at the 
granularity of thread blocks; this makes the situation very 
critical in a sense that a small increase in thread’s resources 

could have a dramatic effect on performance.  

For example, consider a data-intensive application with 128 
threads per block and 8KB of shared memory per thread block. 
This application can schedule 2 thread blocks on each SM. 
However, if each thread’s shared memory usage increases from 
8KB to 10KB (an increase of 25%), the number of blocks per 
SM will decrease from 2 to 1 (a 50% decrease). In other words, 
the G80 can only assign one thread block (128 threads) to an 
SM because a second block would increase the amount of 
shared memory usage above the SM limit. This results in 
significant performance reduction. Therefore, allocating 
memory space in limited scratchpad-like memories in such 
data-intensive applications is highly costly in modern parallel 

architectures such as G80. 

In order to maximize the performance, it is better to allow 
for two or more thread blocks to simultaneously execute. For 
this to happen, not only should there be at least twice as many 
thread blocks as there are multiprocessors in the device, but 
also the amount of allocated shared memory per thread block 
should be at most half the total amount of shared memory 
available per multiprocessor [3]. Therefore, it is crucial to have 
a mechanism to minimize the usage of shared memory. We are 
aiming at achieving this by reusing allocated memory spaces 
and avoiding the allocation of further unnecessary resources for 
each thread block with the goal of maximizing the 
performance. In our vision, by having this transformation, 
developers will provide a straightforward implementation of 
the kernel code that utilizes shared memory, and depend on this 

transformation to optimize the memory usage. 

In the following section, we propose a memory reuse 
scheme particularly designed for scratchpad memory in GPU 
architectures. In Section IV, we demonstrated the effectiveness 

of our approach on our image processing benchmark suite. 

A. Memory Reuse Scheme 

The architectural constraints of shared memory in the G80 
architecture was described in Section I and III. In this section, 
we present the rationale behind our proposed memory 

minimization approach. 

Consider a motivational simple example of the shared 
memory reuse in Figure 2(a), where memory blocks sA, sB 
and sC are shared among all threads in a thread block, and 

need to be allocated to certain memory areas in shared 
memory. A naive allocation, as performed by almost all the 
software compilers, is to map each of the blocks to distinct 
memory locations, as shown in Figure 2(b). A careful 
inspection of the program reveals that memory block sA and 

memory block sC can in fact be shared, leading to the 
allocation in Figure 2(d), which can be obtained by the 
modified program in Figure 2(c). We refer to the 
sA_shared_sC memory block as the “reused memory 

block” in our scheme.  

 

Fig. 1.  A Motivational Example in CUDA 

Our ultimate goal in the memory reuse scheme is to 
minimize the usage of memory space without changing the 
structure of the program. One might argue that the 
programmers should identify such opportunities of memory 
reuse and enforce them manually in the program. We believe 
this requirement is unrealistic for the following reasons: (1) the 
primary goal of a programmer is to specify functionality; for a 
programmer, readability and maintainability has higher priority 
than implementation details; (2) as the application complexity 
increases (i.e. consisting of data structures with different sizes) 
automated optimization tools have a better chance to find an 
optimal solution than the programmers; (3) in a multithreaded 
context it is harder for the programmer to enforce the memory 
sharing while maintaining the correctness of the program; (4) 
eventually productivity of programmers will increase by taking 

the burden of memory management off their shoulder. 

The idea of having a memory reuse scheme is very similar 
to the register allocation problem in traditional compiler 
optimization [20]. The goal in the memory reuse problem is to 
achieve memory minimization by discovering the chances of 
memory reuse with the goal of maximizing the application 
performance. We propose a solution for the memory reuse 
problem based on graph coloring described in the following 

section. 

B. Solution Approach 

1) Reuse Pattern 
As described in previous sections, our goal is to achieve 

memory minimization by discovering the chances of memory 
reuse. Since our solution is proposed for optimization in the 
GPU shared memory space, the desired reuse pattern in 
applications should be suited to the architecture of GPUs and 

shared memory in particular.  

2009 IEEE 7th Symposium on Application Specific Processors (SASP) 45



In the G80 architecture, shared memory is shared among all 
threads in a thread block and we intend to leverage a reuse 
pattern to reuse shared memory spaces across all threads in the 
thread block as illustrated in the example of Figure 2. 
Therefore, execution of all threads in the thread block needs to 
be synchronized to coordinate shared memory accesses to 
provide means of correct and safe memory reuse, as illustrated 
by use of __synchthreads primitive in Figure 2(c), line 4. This 
is due to the fact that each active thread block on a 
multiprocessor is split into SIMD groups of threads (warps) 
executed in an SIMD fashion, and all the SIMD groups from 
all active thread blocks on the multiprocessor are time-sliced. 
Therefore, there is no explicit guaranteed ordering in the 
accesses to shared memory in different SIMD groups in a 
thread block. As a result, in order to make memory reuse a 
viable solution in such SIMD architecture, it is crucial to 
enforce synchronization after or before the points of reuse. We 
define points of reuse as any use or definition point of a 
“reused memory block” in the program. For example lines 3 

and 5 in Figure 2(c). 

Previous methods [6, 19], discussed in the Section II, were 
not designed for scratchpad memories that are shared among 
i.e. 512 threads; therefore, synchronization of threads for 
coordinating the accesses to shared memory was not an issue in 
those studies. In our problem, memory blocks are shared 
among all threads in the thread block; thus, coordination of 
memory accesses according to the underlying threading model 
is critical, and needs to be explicitly added to the kernel code at 
points of reuse – an example of this case is demonstrated in 
Figure 2(c). In section IV, we evaluate the effect of 

synchronization overhead on the overall performance results.  

2) Discovering the Chances of Memory Reuse 
Regardless of the desired reuse pattern in our scheme, we 

describe our solution to discovering the chances of memory 

reuse in this section.  

In our proposed solution, we define a memory block to be 
an arbitrary sized array of data shared among all threads in a 
thread block. A memory partition is a partition of shared 
memory to which one or more memory blocks will be assigned. 
Figure 3 demonstrates our memory reuse scheme. Figure 3(a) 
shows the placement of memory blocks without the memory 
reuse scheme; Figure 3(b) depicts the live range conflicts 
between memory blocks B1..B5 in the given interference graph 
in which two nodes each representing memory blocks are 
connected if their live ranges overlap. Figure 3(c) demonstrates 
the reduction in memory space in each thread block by 
leveraging the memory reuse scheme based on the given 
interference graph. As an example, there is no edge between 
memory block B4 and B1 in the interference graph, and hence, 
B4 and B1 are both assigned to memory partition P1. As it is 
shown in the figure, B4 is placed inside B1’s memory space in 
order to reuse available memory spaces. It should be noted that 
memory partitions should not necessarily be of the same 

dimension. 

 

 

Fig. 2.  A Memory Reuse Scheme for Shared Memory 

The difference between the proposed memory reuse 
technique against the well-known register allocation problem is 
that: inputs to the memory reuse problem are arbitrary sized 
memory blocks. This makes the problem different than register 
allocation in the sense that finding the optimal sizes of memory 
partitions are now added to the problem, which makes it more 
of a placement problem as seen in the bin-packing problem 

[21]. 

 

Fig. 3.  Configuration of memory blocks Bi in their memory partitions 

There are two possible configurations for the placement of 
memory blocks in memory partitions in the memory reuse 
scheme. In the first configuration shown in Figure 4(a), only 
one of the memory blocks in a memory partition is alive at a 
time. In Figure 4(a) memory blocks B1 and B2 are sharing a 
memory partition where B1 is placed inside B2 space; B1 is 
showed to be alive at time t1 and B2 is alive at time t2. In the 
second configuration, it is possible to have more than one 
memory blocks that are simultaneously alive in a memory 
partition as depicted in Figure 4(b) in which B1 and B2 are alive 
at time t1. In this placement B1 and B2 are both placed with no 
physical overlap inside B3 space. Therefore, in this 
configuration B1 and B2 may have conflict in their lifetimes, 

but neither should have conflicts with B3.  

In order to relax the problem, we solve the problem 
assuming only one memory block bi from memory partition Pj 
can be alive at a time. Therefore, our expected configuration 
for the relaxed problem is as illustrated in Figure 4(a), which 
our proposed algorithm is based upon. Thus, two memory 
blocks that are simultaneously alive cannot share a partition. 
Therefore, our ultimate goal is to assign memory blocks with 
non-overlapping lifetimes to memory partitions so that usage of 
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memory space is minimized without changing the structure of 
the program. Given a program with arbitrary sized memory 
blocks bi, our goal is to allocate memory partitions Pj in shared 
memory to fit as many memory blocks with non-overlapping 

lifetimes as possible in Pj.  

 

Algorithm1 Memory Reuse 

Input:  

- {b1, b2, …, bn}: existing allocated memory blocks in 

shared memory 

Output:  

- K: number of memory partitions to be created 

- {P1, P2, …, Pk}: memory partitions to be allocated and 

their related meta-data  

 

1: Determine the live ranges of all memory blocks bi 

2: Build the Interference Graph G(V, E) 

� V={b1, b2, …, bn} 

� Undirected edge connects two memory blocks  

(bi , bj), if live ranges of bi and bj overlap in time  

3: B’�{b0} 

 

4: for all nodes bi adjacent to nodes in B’ do 

5:   B’�B’�{bj} 

6:   Assign color Kj such that adjacent colored nodes has  

  different colors 

7:   K = Max(Kj , K) 

8:   Pj �  Pj �  {bj} 

9:   Partition_Size(Pj) =  

                     Max(Partition_Size(Pj), Block_Size(bj)) 

10:  end for 

 

11:  Allocate P = {P1, P2, …, Pk} in shared memory 

{Physically assign members of P to the corresponding  

 memory partition} 

 
 

 
Algorithm 1 is proposed as a solution for memory reuse 

problem. In Step 1 of the algorithm, the live ranges of memory 
blocks are determined to identify memory blocks with non-
overlapping lifetimes. Step 2, constructs an interference graph 
based on the output of Step 1 in which two nodes each 
representing memory blocks are connected if their live ranges 
overlap (Figure 3(b)). Steps 4-6 cluster the memory blocks with 
non-overlapping lifetimes by coloring the interference graph; 
memory blocks assigned to the same memory partition are 
represented by the same color after coloring the interference 
graph. By adding each color Kj, a new memory partition Pj is 
added to the solution, and memory blocks colored with color Kj 
are assigned to Pj in Step 8. In Step 7, number of memory 
partitions K is calculated. Size of memory partitions are 
calculated based on the maximum size of assigned memory 
blocks based on the configuration described in Figure 4(a) 

(Step 9). 

Note that this algorithm, arbitrarily selects memory blocks 
to be added to the solution, and therefore, the final solution 

may not be optimal. However, we show the effectiveness of 
this algorithm through experimental evaluations. It is worth 
mentioning that finding the optimal size of memory partitions 
and placing memory blocks in a memory partition when having 
more than one live memory block per memory partition at a 
time is NP-Complete, which can be proved by reducing this 
problem to the bin-packing problem [21], which is not 

discussed in this study. 

IV. EXPERIMENTAL EVALUATION 

This section presents the experimental results of manual 
evaluation of our memory optimization scheme introduced in 
Section III. We based our experiments on our image processing 
benchmark suite as a source of real-life and data-intensive 
applications to demonstrate how real-life applications can 
benefit from the introduced optimization method. These real-
life applications are more interesting and useful than 
microbenchmarks because of their larger code sizes and data 

sets, and variety of instructions and control flow [22].    

We used CUDA version 2.0 for our experiments. 
Experiments were performed on Core2 Duo running at 2.33 
GHz with 8 GB of main memory and NVIDIA Quadro FX 

5600 as a commodity GPU.  

A. Benchmarks 

Our benchmark suite
1
 consists of denoising, segmentation 

and registration algorithms particularly designed for medical 
imaging. In this section we describe the most important 
characteristics of the three benchmarks that are mostly relevant 
to our experimental evaluations of the memory reuse scheme. 
The denoising benchmark is a local nonlinear iterative 
denoising algorithm called Total Variation Regularization [23]; 
the segmentation benchmark is a curvature-based segmentation 
algorithm called Active Contour [24] based on geometric 
PDE’s, and the registration benchmark is based on Biharmonic 

Regularization [25]. 

Measurement of curvature exists in both denoising and 
segmentation benchmarks, and has high usage of shared 
memory in its CUDA implementation; curvature is a common 
measurement in image processing and computer vision 
algorithms [23, 24, 26, 27]. The denoising benchmark uses a 
3D computation of curvature (Curvature3D), and the 
segmentation benchmark uses a 2D calculation of the curvature 
(Curvature2D). Detailed explanation on the measurement of 
GPU-based Curvature3D is presented in [29]. We implement 

Curvature3D and Curvature2D as independent kernels. 

The Curvature kernel consists of three measurements: (1) 
partial derivatives, (2) gradient norm and (3) divergence where 
measurements at each step have dependency to the previous 
measurements. For example, measurement of partial derivates 
is dependent on two neighboring pixel values; measurement of 
gradient norm is dependent on four neighboring pixels’ 
corresponding partial derivates; measurement of the divergence 
is dependent on two neighboring pixels’ corresponding 
gradient norms [23]. Therefore, there is significant data reuse; 

                                                             
1
 Benchmarks’ code and data are available by emailing the authors. 
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thus, shared memory is utilized for storing these arrays.  The 
pixel data is loaded from global memory collaboratively by 
each thread, where accesses to global memory are coalesced. It 
is important to note that the computation of Curvature3D is 
heavier than Curvature2D and involves higher synchronization 
overhead. The preferred thread block size is 16�16 for both 

implementations and the SM occupancy is 66%. 

The registration benchmark consists of two computational 
steps, which update a “displacement” array in vertical and 
horizontal directions within each iteration; the two 
displacement arrays are placed in shared memory, as there is 
significant data reuse in computation of each pixels’ 
displacement from displacement of neighboring pixels’ in the 
previous iteration. The pixel data is loaded from texture 
memory in order to utilize the on-chip texture cache. The 
preferred thread block size is 16�24 in our implementation and 

the SM occupancy is 38%. 

In all experiments, we consider each benchmark in its 
preferred configuration; for instance, in the denoising and the 
segmentation benchmarks, the thread block size is set to be 
16�16, while in the registration benchmark, it is set to be 

16�24. 

B. Evaluation of the Memory Reuse Scheme 

We performed a set of experiments applying our memory 
reuse scheme manually on our image processing benchmark 
suite. We compare the results of straightforward GPU-based 
implementations of the three benchmarks with our GPU-based 
implementations optimized for shared memory space based on 

our memory optimization technique. 

TABLE I 

SHARED MEMORY SAVING FOR THE IMAGE PROCESSING BENCHMARK 

 
Benchmark Size w/o 

optimization 

(byte) 

Size w/t 

optimization 

(byte) 

Memory 

Savings 

Denoising 6220 3916 37% 

Segmentation 4940 3084 37.5% 

Registration 13596 13596 0% 

 

Table I shows the memory savings we can achieve for the 
benchmark suite. The first column gives the shared memory 
usage per thread block without optimization. The second 
column gives the shared memory usage per thread block after 
applying the memory optimization. The third column gives the 
percentage of memory saving we are able to achieve per thread 
block. For denoising and segmentation benchmarks the 
achieved memory saving is 37% in the optimized 
implementations, allowing the number of active thread blocks 
to increase from 2 to 3 (increasing the number of active threads 
from 512 to 768) on each multiprocessor, which increases the 
multiprocessor occupancy from 66% to 100%. This increase in 
the number of active threads increases the parallelism, which 

results in increasing the performance. 

In the registration benchmark we cannot achieve memory 
saving directly from this optimization technique. However, by 

changing the order of computations we can apply the memory 
reuse technique to this benchmark as well. In spite of this, we 
ignore this benchmark for optimization since reordering the 
computations is out of the scope of this paper. Nevertheless, it 

is worth pointing out the existing potential. 

We observe that benchmarks that involve multiple steps of 
dependent processing benefit from our memory reuse technique 
to the most. For example, measuring the curvature constitutes 
the measurement of partial derivates, gradient norm – 
dependent on partial derivates – and finally, measurement of 

the divergence – dependent on gradient norm [23]. 

TABLE II 

GPU EXECUTION TIME FOR DENOISING 

Data 

size 

Exec time w/o 

optimization 

(μμsec) 

Exec time w/t 

optimization 

(μsec) 

Percentage 

163 25.2 19.53 22.5% 

323 74.89 60.96 18.6% 

643 390.7 319.59 18.2% 

1283 3033.3 2532.85 16.5% 

 

TABLE III 

GPU EXECUTION TIME FOR SEGMENTATION 

Data 

size 

Exec time w/o 

optimization 

(μsec) 

Exec time w/t 

optimization 

(μsec) 

Percentage 

64x64 35.3 22.14 37% 

128x128 39 27.39 30% 

256x256 70.5 61.2 13% 

512x512 185 181.76 2% 

 

Table II and Table III show the execution time before and 
after applying the optimization to denoising and segmentation 
benchmarks. In both tables, the first column gives the GPU 
execution time without optimization. The second column gives 
the GPU execution time after applying the memory 
optimization. The third column shows the reduction of GPU 
execution time in percentage. It is observed that by increase in 
data size, the performance increase is reduced. This 
demonstrates that high multiprocessor occupancy has less 
effect on performance as the load is increased on GPU. We 
observe that our optimization technique maintains more stable 
results particularly in the denoising benchmark with higher 
computational load and higher synchronization overhead 
compared to the segmentation benchmark. Particularly in the 
denoising benchmark, it is also observed that although there is 
a synchronization overhead involved in our optimization 

scheme, the overall performance results are promising. 

V. CONCLUSION AND FUTURE WORK 

In this work, we proposed a memory reuse scheme to 
minimize the usage of shared memory space in applications 
with high data dependencies and increasing the parallelism as a 
result. In the G80, alleviating the pressure on global memory 
bandwidth generally involves using additional registers and 
shared memory to reuse data, which in turn can limit the 
number of simultaneously executing threads, which 
significantly decreases the application performance. Balancing 
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the usage of these resources is often non-intuitive and some 
applications will run into resource limits. Therefore, our 
proposed memory optimization technique in the G80 
architecture further alleviates the constraints of using shared 
memory for applications with high data dependencies in the 
G80 architecture. We evaluated our proposed memory 
optimization technique by a set of experiments on our image 
processing benchmark suite in medical imaging domain using 
NVIDIA Quadro FX 5600 and CUDA. Implementations based 
on our proposed memory reuse scheme showed up to 37% 
decrease in execution time comparing to their naïve GPU 

implementations. 

Future work for our study is directed towards evaluating the 
memory reuse scheme on a broader range of applications. In 
this paper, we present the promising result of having such an 
optimization scheme in the G80 architecture, based on 
experimental results from our image processing benchmark 
suite. We aim at forming the memory reuse scheme as an 
automated transformation for this platform.  Adding this 
memory optimization technique as an automatic transformation 
method will improve the productivity of developers by taking 

the burden of managing shared memory off their shoulders.  
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