
A Memory Optimization Technique for Software-

Managed Scratchpad Memory in GPUs

Maryam Moazeni
Computer Science Department

University of California,

Los Angeles

mmoazeni@cs.ucla.edu

Alex Bui

Department of Radiological Sciences

University of California,

Los Angeles

buia@mii.ucla.edu

Majid Sarrafzadeh

Computer Science Department

University of California,

Los Angeles

majid@cs.ucla.edu

Abstract—With the appearance of massively parallel and

inexpensive platforms such as the G80 generation of NVIDIA

GPUs, more real-life applications will be designed or ported to

these platforms. This requires structured transformation

methods that remove existing application bottlenecks in these

platforms. Balancing the usage of on-chip resources, used for

improving the application performance, in these platforms is

often non-intuitive and some applications will run into resource

limits. In this paper, we present a memory optimization

technique for the software-managed scratchpad memory in the

G80 architecture to alleviate the constraints of using the

scratchpad memory. We propose a memory optimization scheme

that minimizes the usage of memory space by discovering the

chances of memory reuse with the goal of maximizing the

application performance. Our solution is based on graph

coloring. We evaluated our memory optimization scheme by a set

of experiments on an image processing benchmark suite in

medical imaging domain using NVIDIA Quadro FX 5600 and

CUDA. Implementations based on our proposed memory

optimization scheme showed up to 37% decrease in execution

time comparing to their naïve GPU implementations.

Keywords-GPU Computing, Memory Optimization, CUDA

I. INTRODUCTION

Traditional single-core microprocessors have driven rapid
performance increase in two decades. However, constraints on
power consumption slowed this progress, which have forced
CPU vendors to find other ways to meet high performance
computing needs in science and engineering. One solution is
that of multi-core architectures, which are moving towards
integrating tens or hundreds of cores onto a single chip –
termed as many-core. Many-core processors can offer higher
performance or power efficiency compared to current CPU or

multi-core processors [1].

One example of commodity many-core processors is the
current programmable graphics processing units (GPUs) such
as AMDR580 with CTM [2] as their compute runtime driver or
NVIDIA G80 GPU’s with CUDA [3] as their programming
model, and the future Intel Larrabee [4]. Current GPUs have
hundreds of processor cores and high memory bandwidth. For
example, G80 consists of 16 Streaming Multiprocessors (SMs),
each with eight Streaming Processors (SPs), 8096 registers,
and 16 KB of on-chip memory per SM. The architecture allows
efficient data sharing and synchronization among threads in the
same thread block [5]. More comprehensive descriptions of the

NVIDIA architecture are found in [3, 5, 16].

 Processing power of GPUs has been successfully exploited
in the GPGPU domain, especially in scientific, imaging and
database applications. However, increasing the application

performance in such architectures is not a trivial task.

Modern high-performance computer architectures have
increasing number of on-chip processing elements. Architects
must ensure that memory bandwidth and latency are also
optimized to exploit the full benefits of the available
computational resources. Utilizing cache hierarchy has been the
traditional way to alleviate the memory bottleneck [6]. In
contrast, various modern parallel architectures such as NVIDIA
G80 [5] and IBM Cell [28] utilize fast explicitly managed on-
chip memories, often referred to as scratchpad memories, in
addition to slower off-chip memory in the system to hide the
memory latencies [6]. Scratchpad memories are limited in size
since minimization of on-chip memories is important in

reduction of manufacturing cost [7].

The introduction of the IBM Cell processor with software-
managed per-core memory (local store) led to the development
of techniques for utilizing that memory. However, because of
the architectural differences between Cell processor and
NVIDIA G80, management of the software-managed on-chip
memory (shared memory) in NVIDIA G80 architecture has to
be specifically studied, and the effect of imposed overheads has
to be evaluated based on the architectural organization of G80.
In the NVIDIA G80 architecture, shared memory is partitioned
among up to 512 thread blocks that are assigned to the same
multiprocessor at run-time. The data in shared memory can be
shared among all threads in a thread block, enabling inter-
thread data reuse. This is in contrast to single thread access to
Cell’s local store. Moreover, in G80, an incremental increase in
the usage of shared memory per thread can result in a
substantial decrease in the number of threads that can be
simultaneously executed and thus significantly reducing the
parallelism. Current G80 architecture offers limited resources
(e.g. shared memory) available to each multiprocessor, and
conversely, demand for availability of massive number of
threads to achieve maximum performance. The limited size of
fast-access shared memory available to each multiprocessor
and its considerable impact on reducing the parallelism
motivates us to develop a method to minimize the usage of
shared on-chip memory space in G80. This method should
specifically be designed for the properties of the shared

memory within the G80 architecture.

Main results: In response to this challenge, we propose a
memory optimization method, which assists in increasing

43978-1-4244-4938-5/09/$25.00 c©2009 IEEE

parallelism in applications with high data dependencies by
minimizing the usage of shared on-chip memory (scratchpad
memory) and increasing each multiprocessor’s utilization
(occupancy) in the G80 architecture. We conducted a set of
experiments on our image processing benchmark suite in
medical imaging domain as a source for real-life and data-

intensive applications.

The work we presented in this paper demonstrates the
promising result of having such an optimization scheme in the
NVIDIA G80 architecture, based on experimental results on
our image processing benchmark suite consisting of real-life
and data-intensive applications. Our intent is to form the
proposed memory optimization technique as automatic

transformations for this platform.

Organization: The remainder of this paper is organized as
follows. We first discuss related work in Section II. In Section
III, we present our motivations for memory optimization for
scratchpad memory in the NVIDIA G80 architecture, and
propose our solution for the memory optimization scheme.
Then we evaluate our method by a set of experiments on an
image processing benchmark suite in medical imaging domain
in Section IV. Finally, we present some concluding remarks

and suggestions for future work in Section V.

II. RELATED WORK

Historically, a motivation for the development of data-
parallel languages is strongly related with Single Instruction
Multiple Data (SIMD) computer architectures. Data-parallel
languages such as OpenMP [8] are explicit parallel
programming model to support parallel computing. Fortran 90
[9] was one of the most widely used data-parallel languages
that provide constructs for specifying concurrent execution
based on data-parallelism. HPF [10] extends FORTRAN 90
with additional parallel constructs and data placement
directives. HPF was introduced as a standard data-parallel
language to support programs with SPMD. Message passing
libraries such as MPI [11] also became a popular programming
model for scalable parallel systems. Intel Ct [12] is a
programming model developed by Intel to ease the exploitation
of its future multi-core chips. It is based on the exploitation of

SIMD to produce automatically parallelized programs.

The interest in GPU programming for general-purpose
computations has been driven by relatively recent
improvements in the programmability and flexibility of
graphics hardware. CUDA [3] from NVIDIA, by increasing the
flexibility and programmability of GPU’s has improved their
suitability for high-performance computing. A programming
interface alternative to CUDA is available for AMD Stream
Processor, using the R580 GPU, in the form of the Close to
Metal (CTM) [2] compute runtime driver which, completely
exposes ISA to the programmer; thus providing fine-grained
control. Intel’s C for Heterogeneous Integration (CHI)
programming environment [13] extends the OpenMP pragma
for heterogeneous multithreading programming that tightly
couples specialized accelerator cores with general-purpose

CPU cores.

The challenges in the GPGPU community have revolved
around the constraints of the programming environment and

optimal mapping of applications so to best leverage the highly
parallel GPU architecture. There have been several attempts in
introducing structured methods and models for optimizing
applications for maximum performance in this domain. Ryoo et
al, present metrics to judge the performance of an optimization
configuration based on first-factors of performance [14]. In
this work, these optimization metrics are used to prune many
optimization configurations; and therefore reducing the
optimization space up to 98% without missing the
configuration yielding best performance. Govindaraju et al,
present a memory model in [15] for analyzing and improving
the performance of scientific algorithms on graphic processors.
Their model is based on texturing hardware and incorporates
several characteristics of GPU architectures. There has been
few comprehensive performance studies conducted in [16, 17].
[16] studied the performance of a broad range of applications
and presents general principles for optimizing applications for
this type of architecture. [17] also provides an application study
of diverse applications and discusses advantages and
inefficiencies of the CUDA programming model and some
desirable features that might allow for more readily support a

larger body of applications.

There have been several structures proposed in different
programming languages deploying memory reuse approaches.
The approach in [18] uses array transformations on data and
shows that constraints on memory allocation functions can be
formulated as one or more ILP problems. Our memory
optimization technique is most similar to that of [7] that uses
pointer analysis and graph coloring for discovering the chances
of memory sharing, incorporated in a behavioral synthesis tool
that synthesizes sequential C programs. However, the focus of
this work is only sequential programs. In [30] a scratchpad
overlay technique for low power embedded processors is
presented which analyzes the application and inserts
instructions to dynamically copy both variables and code
segments onto the scratchpad at runtime. This problem is also
an extension of the global register allocation problem.
Additionally, graph coloring has also been used for optimizing
utilization of stream register files in stream processors [19].
Our memory optimization technique is designed particularly
for an architecture in which scratchpad memories are shared
among a large number threads, which require us to adopt a
reuse pattern to reuse the data that is shared among all threads
in a thread block. In general, our memory optimization
technique employs similar approaches from register allocation
domain [20] that have been previously studied and proved to be

practical.

III. MEMORY OPTIMIZATION

Global memory bandwidth can limit the throughput of the
system as described in Section 1. In G80, alleviating the
pressure on global memory bandwidth generally involves using
additional registers and shared memory to reuse data, which in
turn can limit the number of simultaneously executing threads.
Balancing the usage of these resources is often non-intuitive
and some applications will run into resource limits. This
section presents a memory optimization technique in the G80
architecture to further alleviate the constraints of using shared

memory for data-intensive applications in the G80 architecture.

44 2009 IEEE 7th Symposium on Application Specific Processors (SASP)

Data-intensive applications that have high usage of shared
memory in their CUDA implementations are limited by low
SM occupancy when ported to the G80 architecture. In the
G80, as each thread’s resource usage (e.g. shared memory and
register count) increases, the total number of threads that can
occupy the SM decreases, which results in reduction of SM
occupancy that results in significant performance loss.
Occasionally this decrease in thread count occurs in a dramatic
fashion because threads are assigned to an SM at the
granularity of thread blocks; this makes the situation very
critical in a sense that a small increase in thread’s resources

could have a dramatic effect on performance.

For example, consider a data-intensive application with 128
threads per block and 8KB of shared memory per thread block.
This application can schedule 2 thread blocks on each SM.
However, if each thread’s shared memory usage increases from
8KB to 10KB (an increase of 25%), the number of blocks per
SM will decrease from 2 to 1 (a 50% decrease). In other words,
the G80 can only assign one thread block (128 threads) to an
SM because a second block would increase the amount of
shared memory usage above the SM limit. This results in
significant performance reduction. Therefore, allocating
memory space in limited scratchpad-like memories in such
data-intensive applications is highly costly in modern parallel

architectures such as G80.

In order to maximize the performance, it is better to allow
for two or more thread blocks to simultaneously execute. For
this to happen, not only should there be at least twice as many
thread blocks as there are multiprocessors in the device, but
also the amount of allocated shared memory per thread block
should be at most half the total amount of shared memory
available per multiprocessor [3]. Therefore, it is crucial to have
a mechanism to minimize the usage of shared memory. We are
aiming at achieving this by reusing allocated memory spaces
and avoiding the allocation of further unnecessary resources for
each thread block with the goal of maximizing the
performance. In our vision, by having this transformation,
developers will provide a straightforward implementation of
the kernel code that utilizes shared memory, and depend on this

transformation to optimize the memory usage.

In the following section, we propose a memory reuse
scheme particularly designed for scratchpad memory in GPU
architectures. In Section IV, we demonstrated the effectiveness

of our approach on our image processing benchmark suite.

A. Memory Reuse Scheme

The architectural constraints of shared memory in the G80
architecture was described in Section I and III. In this section,
we present the rationale behind our proposed memory

minimization approach.

Consider a motivational simple example of the shared
memory reuse in Figure 2(a), where memory blocks sA, sB
and sC are shared among all threads in a thread block, and

need to be allocated to certain memory areas in shared
memory. A naive allocation, as performed by almost all the
software compilers, is to map each of the blocks to distinct
memory locations, as shown in Figure 2(b). A careful
inspection of the program reveals that memory block sA and

memory block sC can in fact be shared, leading to the
allocation in Figure 2(d), which can be obtained by the
modified program in Figure 2(c). We refer to the
sA_shared_sC memory block as the “reused memory

block” in our scheme.

Fig. 1. A Motivational Example in CUDA

Our ultimate goal in the memory reuse scheme is to
minimize the usage of memory space without changing the
structure of the program. One might argue that the
programmers should identify such opportunities of memory
reuse and enforce them manually in the program. We believe
this requirement is unrealistic for the following reasons: (1) the
primary goal of a programmer is to specify functionality; for a
programmer, readability and maintainability has higher priority
than implementation details; (2) as the application complexity
increases (i.e. consisting of data structures with different sizes)
automated optimization tools have a better chance to find an
optimal solution than the programmers; (3) in a multithreaded
context it is harder for the programmer to enforce the memory
sharing while maintaining the correctness of the program; (4)
eventually productivity of programmers will increase by taking

the burden of memory management off their shoulder.

The idea of having a memory reuse scheme is very similar
to the register allocation problem in traditional compiler
optimization [20]. The goal in the memory reuse problem is to
achieve memory minimization by discovering the chances of
memory reuse with the goal of maximizing the application
performance. We propose a solution for the memory reuse
problem based on graph coloring described in the following

section.

B. Solution Approach

1) Reuse Pattern
As described in previous sections, our goal is to achieve

memory minimization by discovering the chances of memory
reuse. Since our solution is proposed for optimization in the
GPU shared memory space, the desired reuse pattern in
applications should be suited to the architecture of GPUs and

shared memory in particular.

2009 IEEE 7th Symposium on Application Specific Processors (SASP) 45

In the G80 architecture, shared memory is shared among all
threads in a thread block and we intend to leverage a reuse
pattern to reuse shared memory spaces across all threads in the
thread block as illustrated in the example of Figure 2.
Therefore, execution of all threads in the thread block needs to
be synchronized to coordinate shared memory accesses to
provide means of correct and safe memory reuse, as illustrated
by use of __synchthreads primitive in Figure 2(c), line 4. This
is due to the fact that each active thread block on a
multiprocessor is split into SIMD groups of threads (warps)
executed in an SIMD fashion, and all the SIMD groups from
all active thread blocks on the multiprocessor are time-sliced.
Therefore, there is no explicit guaranteed ordering in the
accesses to shared memory in different SIMD groups in a
thread block. As a result, in order to make memory reuse a
viable solution in such SIMD architecture, it is crucial to
enforce synchronization after or before the points of reuse. We
define points of reuse as any use or definition point of a
“reused memory block” in the program. For example lines 3

and 5 in Figure 2(c).

Previous methods [6, 19], discussed in the Section II, were
not designed for scratchpad memories that are shared among
i.e. 512 threads; therefore, synchronization of threads for
coordinating the accesses to shared memory was not an issue in
those studies. In our problem, memory blocks are shared
among all threads in the thread block; thus, coordination of
memory accesses according to the underlying threading model
is critical, and needs to be explicitly added to the kernel code at
points of reuse – an example of this case is demonstrated in
Figure 2(c). In section IV, we evaluate the effect of

synchronization overhead on the overall performance results.

2) Discovering the Chances of Memory Reuse
Regardless of the desired reuse pattern in our scheme, we

describe our solution to discovering the chances of memory

reuse in this section.

In our proposed solution, we define a memory block to be
an arbitrary sized array of data shared among all threads in a
thread block. A memory partition is a partition of shared
memory to which one or more memory blocks will be assigned.
Figure 3 demonstrates our memory reuse scheme. Figure 3(a)
shows the placement of memory blocks without the memory
reuse scheme; Figure 3(b) depicts the live range conflicts
between memory blocks B1..B5 in the given interference graph
in which two nodes each representing memory blocks are
connected if their live ranges overlap. Figure 3(c) demonstrates
the reduction in memory space in each thread block by
leveraging the memory reuse scheme based on the given
interference graph. As an example, there is no edge between
memory block B4 and B1 in the interference graph, and hence,
B4 and B1 are both assigned to memory partition P1. As it is
shown in the figure, B4 is placed inside B1’s memory space in
order to reuse available memory spaces. It should be noted that
memory partitions should not necessarily be of the same

dimension.

Fig. 2. A Memory Reuse Scheme for Shared Memory

The difference between the proposed memory reuse
technique against the well-known register allocation problem is
that: inputs to the memory reuse problem are arbitrary sized
memory blocks. This makes the problem different than register
allocation in the sense that finding the optimal sizes of memory
partitions are now added to the problem, which makes it more
of a placement problem as seen in the bin-packing problem

[21].

Fig. 3. Configuration of memory blocks Bi in their memory partitions

There are two possible configurations for the placement of
memory blocks in memory partitions in the memory reuse
scheme. In the first configuration shown in Figure 4(a), only
one of the memory blocks in a memory partition is alive at a
time. In Figure 4(a) memory blocks B1 and B2 are sharing a
memory partition where B1 is placed inside B2 space; B1 is
showed to be alive at time t1 and B2 is alive at time t2. In the
second configuration, it is possible to have more than one
memory blocks that are simultaneously alive in a memory
partition as depicted in Figure 4(b) in which B1 and B2 are alive
at time t1. In this placement B1 and B2 are both placed with no
physical overlap inside B3 space. Therefore, in this
configuration B1 and B2 may have conflict in their lifetimes,

but neither should have conflicts with B3.

In order to relax the problem, we solve the problem
assuming only one memory block bi from memory partition Pj
can be alive at a time. Therefore, our expected configuration
for the relaxed problem is as illustrated in Figure 4(a), which
our proposed algorithm is based upon. Thus, two memory
blocks that are simultaneously alive cannot share a partition.
Therefore, our ultimate goal is to assign memory blocks with
non-overlapping lifetimes to memory partitions so that usage of

46 2009 IEEE 7th Symposium on Application Specific Processors (SASP)

memory space is minimized without changing the structure of
the program. Given a program with arbitrary sized memory
blocks bi, our goal is to allocate memory partitions Pj in shared
memory to fit as many memory blocks with non-overlapping

lifetimes as possible in Pj.

Algorithm1 Memory Reuse

Input:

- {b1, b2, …, bn}: existing allocated memory blocks in

shared memory

Output:

- K: number of memory partitions to be created

- {P1, P2, …, Pk}: memory partitions to be allocated and

their related meta-data

1: Determine the live ranges of all memory blocks bi

2: Build the Interference Graph G(V, E)

� V={b1, b2, …, bn}

� Undirected edge connects two memory blocks

(bi , bj), if live ranges of bi and bj overlap in time

3: B’�{b0}

4: for all nodes bi adjacent to nodes in B’ do

5: B’�B’�{bj}

6: Assign color Kj such that adjacent colored nodes has

 different colors

7: K = Max(Kj , K)

8: Pj � Pj � {bj}

9: Partition_Size(Pj) =

 Max(Partition_Size(Pj), Block_Size(bj))

10: end for

11: Allocate P = {P1, P2, …, Pk} in shared memory

{Physically assign members of P to the corresponding

 memory partition}

Algorithm 1 is proposed as a solution for memory reuse

problem. In Step 1 of the algorithm, the live ranges of memory
blocks are determined to identify memory blocks with non-
overlapping lifetimes. Step 2, constructs an interference graph
based on the output of Step 1 in which two nodes each
representing memory blocks are connected if their live ranges
overlap (Figure 3(b)). Steps 4-6 cluster the memory blocks with
non-overlapping lifetimes by coloring the interference graph;
memory blocks assigned to the same memory partition are
represented by the same color after coloring the interference
graph. By adding each color Kj, a new memory partition Pj is
added to the solution, and memory blocks colored with color Kj
are assigned to Pj in Step 8. In Step 7, number of memory
partitions K is calculated. Size of memory partitions are
calculated based on the maximum size of assigned memory
blocks based on the configuration described in Figure 4(a)

(Step 9).

Note that this algorithm, arbitrarily selects memory blocks
to be added to the solution, and therefore, the final solution

may not be optimal. However, we show the effectiveness of
this algorithm through experimental evaluations. It is worth
mentioning that finding the optimal size of memory partitions
and placing memory blocks in a memory partition when having
more than one live memory block per memory partition at a
time is NP-Complete, which can be proved by reducing this
problem to the bin-packing problem [21], which is not

discussed in this study.

IV. EXPERIMENTAL EVALUATION

This section presents the experimental results of manual
evaluation of our memory optimization scheme introduced in
Section III. We based our experiments on our image processing
benchmark suite as a source of real-life and data-intensive
applications to demonstrate how real-life applications can
benefit from the introduced optimization method. These real-
life applications are more interesting and useful than
microbenchmarks because of their larger code sizes and data

sets, and variety of instructions and control flow [22].

We used CUDA version 2.0 for our experiments.
Experiments were performed on Core2 Duo running at 2.33
GHz with 8 GB of main memory and NVIDIA Quadro FX

5600 as a commodity GPU.

A. Benchmarks

Our benchmark suite
1
 consists of denoising, segmentation

and registration algorithms particularly designed for medical
imaging. In this section we describe the most important
characteristics of the three benchmarks that are mostly relevant
to our experimental evaluations of the memory reuse scheme.
The denoising benchmark is a local nonlinear iterative
denoising algorithm called Total Variation Regularization [23];
the segmentation benchmark is a curvature-based segmentation
algorithm called Active Contour [24] based on geometric
PDE’s, and the registration benchmark is based on Biharmonic

Regularization [25].

Measurement of curvature exists in both denoising and
segmentation benchmarks, and has high usage of shared
memory in its CUDA implementation; curvature is a common
measurement in image processing and computer vision
algorithms [23, 24, 26, 27]. The denoising benchmark uses a
3D computation of curvature (Curvature3D), and the
segmentation benchmark uses a 2D calculation of the curvature
(Curvature2D). Detailed explanation on the measurement of
GPU-based Curvature3D is presented in [29]. We implement

Curvature3D and Curvature2D as independent kernels.

The Curvature kernel consists of three measurements: (1)
partial derivatives, (2) gradient norm and (3) divergence where
measurements at each step have dependency to the previous
measurements. For example, measurement of partial derivates
is dependent on two neighboring pixel values; measurement of
gradient norm is dependent on four neighboring pixels’
corresponding partial derivates; measurement of the divergence
is dependent on two neighboring pixels’ corresponding
gradient norms [23]. Therefore, there is significant data reuse;

1
 Benchmarks’ code and data are available by emailing the authors.

2009 IEEE 7th Symposium on Application Specific Processors (SASP) 47

thus, shared memory is utilized for storing these arrays. The
pixel data is loaded from global memory collaboratively by
each thread, where accesses to global memory are coalesced. It
is important to note that the computation of Curvature3D is
heavier than Curvature2D and involves higher synchronization
overhead. The preferred thread block size is 16�16 for both

implementations and the SM occupancy is 66%.

The registration benchmark consists of two computational
steps, which update a “displacement” array in vertical and
horizontal directions within each iteration; the two
displacement arrays are placed in shared memory, as there is
significant data reuse in computation of each pixels’
displacement from displacement of neighboring pixels’ in the
previous iteration. The pixel data is loaded from texture
memory in order to utilize the on-chip texture cache. The
preferred thread block size is 16�24 in our implementation and

the SM occupancy is 38%.

In all experiments, we consider each benchmark in its
preferred configuration; for instance, in the denoising and the
segmentation benchmarks, the thread block size is set to be
16�16, while in the registration benchmark, it is set to be

16�24.

B. Evaluation of the Memory Reuse Scheme

We performed a set of experiments applying our memory
reuse scheme manually on our image processing benchmark
suite. We compare the results of straightforward GPU-based
implementations of the three benchmarks with our GPU-based
implementations optimized for shared memory space based on

our memory optimization technique.

TABLE I

SHARED MEMORY SAVING FOR THE IMAGE PROCESSING BENCHMARK

Benchmark Size w/o

optimization

(byte)

Size w/t

optimization

(byte)

Memory

Savings

Denoising 6220 3916 37%

Segmentation 4940 3084 37.5%

Registration 13596 13596 0%

Table I shows the memory savings we can achieve for the
benchmark suite. The first column gives the shared memory
usage per thread block without optimization. The second
column gives the shared memory usage per thread block after
applying the memory optimization. The third column gives the
percentage of memory saving we are able to achieve per thread
block. For denoising and segmentation benchmarks the
achieved memory saving is 37% in the optimized
implementations, allowing the number of active thread blocks
to increase from 2 to 3 (increasing the number of active threads
from 512 to 768) on each multiprocessor, which increases the
multiprocessor occupancy from 66% to 100%. This increase in
the number of active threads increases the parallelism, which

results in increasing the performance.

In the registration benchmark we cannot achieve memory
saving directly from this optimization technique. However, by

changing the order of computations we can apply the memory
reuse technique to this benchmark as well. In spite of this, we
ignore this benchmark for optimization since reordering the
computations is out of the scope of this paper. Nevertheless, it

is worth pointing out the existing potential.

We observe that benchmarks that involve multiple steps of
dependent processing benefit from our memory reuse technique
to the most. For example, measuring the curvature constitutes
the measurement of partial derivates, gradient norm –
dependent on partial derivates – and finally, measurement of

the divergence – dependent on gradient norm [23].

TABLE II

GPU EXECUTION TIME FOR DENOISING

Data

size

Exec time w/o

optimization

(μμsec)

Exec time w/t

optimization

(μsec)

Percentage

163 25.2 19.53 22.5%

323 74.89 60.96 18.6%

643 390.7 319.59 18.2%

1283 3033.3 2532.85 16.5%

TABLE III

GPU EXECUTION TIME FOR SEGMENTATION

Data

size

Exec time w/o

optimization

(μsec)

Exec time w/t

optimization

(μsec)

Percentage

64x64 35.3 22.14 37%

128x128 39 27.39 30%

256x256 70.5 61.2 13%

512x512 185 181.76 2%

Table II and Table III show the execution time before and
after applying the optimization to denoising and segmentation
benchmarks. In both tables, the first column gives the GPU
execution time without optimization. The second column gives
the GPU execution time after applying the memory
optimization. The third column shows the reduction of GPU
execution time in percentage. It is observed that by increase in
data size, the performance increase is reduced. This
demonstrates that high multiprocessor occupancy has less
effect on performance as the load is increased on GPU. We
observe that our optimization technique maintains more stable
results particularly in the denoising benchmark with higher
computational load and higher synchronization overhead
compared to the segmentation benchmark. Particularly in the
denoising benchmark, it is also observed that although there is
a synchronization overhead involved in our optimization

scheme, the overall performance results are promising.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a memory reuse scheme to
minimize the usage of shared memory space in applications
with high data dependencies and increasing the parallelism as a
result. In the G80, alleviating the pressure on global memory
bandwidth generally involves using additional registers and
shared memory to reuse data, which in turn can limit the
number of simultaneously executing threads, which
significantly decreases the application performance. Balancing

48 2009 IEEE 7th Symposium on Application Specific Processors (SASP)

the usage of these resources is often non-intuitive and some
applications will run into resource limits. Therefore, our
proposed memory optimization technique in the G80
architecture further alleviates the constraints of using shared
memory for applications with high data dependencies in the
G80 architecture. We evaluated our proposed memory
optimization technique by a set of experiments on our image
processing benchmark suite in medical imaging domain using
NVIDIA Quadro FX 5600 and CUDA. Implementations based
on our proposed memory reuse scheme showed up to 37%
decrease in execution time comparing to their naïve GPU

implementations.

Future work for our study is directed towards evaluating the
memory reuse scheme on a broader range of applications. In
this paper, we present the promising result of having such an
optimization scheme in the G80 architecture, based on
experimental results from our image processing benchmark
suite. We aim at forming the memory reuse scheme as an
automated transformation for this platform. Adding this
memory optimization technique as an automatic transformation
method will improve the productivity of developers by taking

the burden of managing shared memory off their shoulders.

REFERENCES

[1] D. Manocha, M. C. Lin, N. Govindaraju. GPGPU to Many-Core

Processing: Higher Performance for Mass Market
Applications. Manycore Computing Workshop, 2007.

[2] AMD Stream Processor.

http://ati.amd.com/products/streamprocessor/index.html

[3] NVIDIA Corporation. NVIDIA CUDA Programming Guide, version
1.1, 2007.

[4] Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey,

P., Junkins, S., Lake, A., Sugerman, J., Cavin, R., Espasa, R.,
Grochowski, E., Juan, T., and Hanrahan, P. 2008. Larrabee: a many-core

x86 architecture for visual computing. ACM Trans. Graph. 27, 3 (Aug.
2008).

[5] J. Nickolls and I. Buck. NVIDIA CUDA software and GPU parallel
computing architecture. Microprocessor Forum, May 2007.

[6] Kandemir, M. and Choudhary, A. 2002. Compiler-directed scratch pad

memory hierarchy design and management. In Proceedings of the 39th
Conference on Design Automation (New Orleans, Louisiana, USA, June

10 - 14, 2002). DAC '02. ACM, New York, NY, 628-633.

[7] Zhu, J. 2001. Static memory allocation by pointer analysis and coloring.
In Proceedings of the Conference on Design, Automation and Test in

Europe (Munich, Germany). W. Nebel and A. Jerraya, Eds. Design,
Automation, and Test in Europe. IEEE Press, Piscataway, NJ, 785-790.

[8] OpenMP Architecture Review Board. OpenMP application program

interface, May 2005.

[9] J. C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L.
Wagener. Fortran 90 handbook: complete ANSI/ISO reference. Intertext

Publications, Inc.,/McGraw-Hill, Inc., 1992.

[10] D. B. Loveman. High Performance Fortran. IEEE Parallel & Distributed
Technology: Systems & Technology, 1(1):25–42, 1993.

[11] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. HussLederman.
MPI: The Complete Reference. MIT Press, 1995.

[12] ArchitecturesA Gholoum, E Sprangle, J Fang, G Wu, X Zhou. Ct: A

Flexible Parallel Programming Model for Tera-scale - Intel Whitepaper,
October, 2007.

[13] P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang, X. Tian, M. Girkar,

N. Y. Yang, G.-Y. Lueh, and H. Wang. EXOCHI: architecture and
programming environment for a heterogeneous multi-core multithreaded

system. In Proceedings of the 2007 ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 156–166,
2007.

[14] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, J. A.
Stratton, and W. mei W. Hwu, “Program optimization space pruning for

a multithreaded gpu,” in CGO ’08: Proceedings of the sixth annual
IEEE/ACM international symposium on Code generation and

optimization. New York, NY, USA: ACM, 2008, pp. 195–204.

[15] N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha, “A memory
model for scientific algorithms on graphics processors,” in SC ’06:

Proceedings of the 2006 ACM/IEEE conference on Supercomputing.
New York, NY, USA: ACM, 2006, p. 89.

[16] Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B.,

and Hwu, W. W. 2008. Optimization principles and application
performance evaluation of a multithreaded GPU using CUDA. In

Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (Salt Lake City, UT, USA, February

20 - 23, 2008). PPoPP '08. ACM, New York, NY, 73-82.

[17] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., and Skadron,
K. A performance study of general-purpose applications on graphics

processors using CUDA. J. Parallel Distrib. Comput. 68, 10 (Oct. 2008),
1370-1380.

[18] D. Wilde and S. V. Rajopadhye, “Memory reuse analysis in the

polyhedral model,” in Euro-Par ’96: Proceedings of the Second
International Euro-Par Conference on Parallel Processing. London, UK:

SpringerVerlag, 1996, pp. 389–397.

[19] Xuejun Yang, Li Wang, Jingling Xue, Yu Deng and Ying Zhang,
“Comparability Graph Coloring for Optimizing Utilization of Stream

Register Files in Stream Processors", The 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2009.

[20] P. Briggs, K. D. Cooper, and L. Torczon, “Improvements to graph
coloring register allocation,” ACM Trans. Program. Lang. Syst., vol. 16,

no. 3, pp. 428–455, 1994.

[21] V. V. Vazirani, Approximation algorithms. New York, NY, USA:
Springer-Verlag New York, Inc., 2001.

[22] Shane Ryoo. Program Optimization Strategies for Data-Parallel Many-

Core Processors. Ph.D. Dissertation, University of Illinois at Urbana
Champaign.

[23] O. Christiansen, T.-M. Lee, J. Lie, U. Sinha, and T. F. Chan, “Total

variation regularization of matrix-valued images,” International Journal
of Biomedical Imaging, vol. 2007, 2007.

[24] Active Contour and Segmentation Models Using Geometric PDE's for

Medical Imaging Tony F. Chan and Luminita A. Vese, in Malladi, R.
(Ed.), ``Geometric Methods in Bio-Medical Image Processing'', Series:

Mathematics and Visualization, Springer, 2002, pp. 63-75.

[25] B. Fischer and J. Modersitzki, "Curvature based image registration,"
J.Math. Imaging Vis., vol. 18, no. 1, pp. 81–85, 2003.

[26] Kindlmann, G.; Whitaker, R.; Tasdizen, T.; Moller, T., "Curvature-based
transfer functions for direct volume rendering: methods and

applications," Visualization, 2003. VIS 2003. IEEE , vol., no., pp.513-
520, 24-24 Oct. 2003.

[27] Wang, W., Pottmann, H., and Liu, Y. 2006. Fitting B-spline curves to

point clouds by curvature-based squared distance minimization. ACM
Trans. Graph. 25, 2 (Apr. 2006), 214-238.

[28] C. R. Johns and D. A. Brokenshire, ”Introduction to the Cell Broadband
Engine Architecture”, IBM Journal of Research and Development, Vol
51, Number 5, 2007, pp 503-520.

[29] Maryam Moazeni, Alex Bui, Majid Sarrafzadeh, "Accelerating Total

Variation Regularization for Matrix-Valued Images on GPUs", In the
Proceedings of the 2009 ACM International Conference on Computing

Frontiers, May 2009.

[30] M. Verma and P. Marwedel. Overlay techniques for scratchpad
memories in low-power embedded processors. IEEE Transactions on
Very Large Scale Integration Systems, 4(8):802815, Aug. 2006.

2009 IEEE 7th Symposium on Application Specific Processors (SASP) 49

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

