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Abstract – Dynamic Bayesian Belief networks (DBNs) have 
been commonly used to represent temporal data in several 
domains; however, an ideal representation requires a near 
perfect mapping between the process being modeled and the 
DBN. Furthermore, DBNs assume a full set of observations 
collected at a fixed frequency. Bayesian model selection has 
arisen to address biased inference and underlying assumptions 
about the data (e.g., distribution, representativeness) to choose 
a model that best fits the given observations. Per patient case, a 
Bayesian model is generated to maximize specificity, and the 
collective set of models is averaged to fit all examples. This 
paper demonstrates the advantages of patient-specific model-
ing over a DBN-driven approach. Results evaluating this ap-
proach are presented based on models for two longitudinal 
clinical datasets (neuro-oncology, knee osteoarthritis). Largely, 
the patient-specific models show improved performance in 
prediction relative to the DBNs. 

Keywords-temporal modeling; Dynamic Bayesian Belief 
network; Bayesian model averaging; state-model; data mining; 
imputation; resampling 

I.  INTRODUCTION 
Despite early efforts in the 1970s [1, 2] that explored the 

incorporation of uncertainty and conflicting information in 
decision making, quantitative models built from clinical da-
tasets to support predictive tasks have yet to fully accommo-
date the unique presentation of a patient’s characteristics and 
the assumptions made on clinical data (e.g., distribution, 
representativeness). Indeed, medical decision-making mod-
els are complicated by: the high-dimensional nature of clini-
cal data; the varying presentation of patients and disease over 
time at the individual and global levels; and the trade-offs 
amongst multiple decision alternatives [3]. Other issues as-
sociated with the development of predictive models include 
the uncertainty with how data are collected and interpreted to 
construct the model; the effects of missing data (which is 
typical of routine clinical environments); and the evaluation 
of potential relationships between a patient’s variables and 
presumed knowledge of patients with the same disease.  

This paper contrasts the population-wide and instance-
specific approaches to constructing a Bayesian belief net-
work (BBN) from clinical, temporally-oriented datasets. 
Specifically, the model parameters (e.g., conditional proba-
bility tables) are learned in the context of missing data for: 1) 
a dynamic belief network (DBN), which is used as a popula-
tion-wide temporal model; and 2) an instant-specific patient 
model developed using a Lazy Bayes Rule (LBR). The per-

formances of the DBN- and LBR-based models are 
compared in predicting the evolution and longitudinal pres-
entation of chronic diseases (brain cancer, knee osteoarthri-
tis). The remainder of this paper is organized as follows. 
Section II reviews related work addressing challenges to the 
construction of context-specific models from clinical data. 
Section III describes the test datasets, and the methodology 
used to construct the DBN- and LBR-based models. Section 
IV presents the evaluation results and comparison of the two 
models’ predictive power. Finally, Sections V and VI pro-
vide a discussion of the results and conclude with potential 
future work. 

II. BACKGROUND AND PREVIOUS WORK 
Classic statistical and machine learning methods typical-

ly induce a model from a set of observed training data, which 
is subsequently applied to prospective cases. Such approach-
es establish a population-wide model, as they use a group of 
previously seen cases as training data to derive an optimal set 
of relationships and statistical/probabilistic features to fit all 
prospective test cases. More recent research [4] has sug-
gested the use of instance-specific models, which use fea-
tures about a particular instance, in addition to information 
from previously seen cases, to train an optimal, local model 
for each observed training case. Learning models that are 
specific to the particular features of a given patient case has 
been shown to improve predictive performance [4]. Further-
more, instance-specific modeling has the potential to explain 
the disparities innate to disease progression and to an indi-
vidual patient case for improved patient-centric treatment; 
ultimately, these methods may improve the predictive power 
of medical decision-making tools by more accurately por-
traying the context unique to a patient’s record. 

A. Instance-specific models 
The traditional, a priori predictive model used in various 

domains of biomedical research is commonly generalized to 
the baseline set of patients in a disease population, but is not 
tailored to an individual patient. In [5] patient-specific mod-
els were tailored to the generic anatomic model with infor-
mation about the specific individual. Knowledge about each 
nodule from a patient’s baseline exam was used to update 
the generic features in the a priori model with patient-
specific information (e.g., nodule volume, shape, location), 
reducing the uncertainty associated with information known 
about a specific patient. In the area of biological modeling, 
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instance-specific models are used as a form of case-based 
reasoning, transferring a solution from a previously seen, 
most “similar” case, to the case at hand. The solution is then 
re-adapted per the outcome of its application to the new case 
and differences between the current case and “historical” 
precedent are accounted for [6].  

B. Dynamic Bayesian Networks 
To formulate a comprehensive patient history, modeling 

temporal relationships throughout the record is necessary. 
Unfortunately the observations made during routine patient 
care may not necessarily conform across different individu-
als (i.e., observations may not be acquired at fixed points in 
time). Dynamic Bayesian networks (DBNs) [7-10] have 
been used to model the longitudinal aspects of (clinical) data 
over time. A DBN extends a classic BBN to model proba-
bility distributions over semi-finite collections of random 
variables, separated by input, hidden, and output variables 
of a state-space model [7]. In application, a DBN can be 
defined as a pair of Bayesian networks, where one BBN 
defines the prior probability of a variable ܲሺܼଵሻ in the sys-
tem and the second BBN is a two-slice temporal belief net-
work (TBN) defining the conditional probability of the vari-
able using a directed acyclic graph (DAG) [8]. As a generic 
model, a DBN may not effectively describe previously un-
observed data, due to the variation and uncertainty in clini-
cal observations between patients within the same cohort.  

C. Bayesian Model Averaging 
Another problem with the DBN is that it utilizes a single 

model as an approximate best fit for the observed data. Not-
ably, value-specific independencies are not modeled. Infer-
ring from a single model may fail to account for information 
about effect sizes and predictions [11]; and different inde-
pendence relationships may hold under only certain configu-
rations of the network. In contrast, patient-specific models 
can capture context-specific independencies [12].  

To this end, applying Bayesian model averaging (BMA) 
[13, 14] has been shown to provide overall better predictive 
ability than using a single model. The patient-specific Mar-
kov blanket local structure (PSMBl-MA) algorithm [15] is a 
specific type of patient-specific model-averaging (PSA) me-
thod that learns Markov blanket (MB) models using decision 
graph conditional probability distributions. PSMBl-MA de-
rives the posterior distribution ܲሺܼ௧|ݔ௧, ሻܦ  for the target 
variable Zt, given the values of the other variables, Xt = xt for 
the case at hand and set of training data, D. The computation 
of the posterior distribution ܲሺܼ௧|ݔ௧,  ሻ by Bayesian modelܦ
averaging is given by: ܲሺܼ௧|ݔ௧, ሻܦ ൌ ∑ ܲሺܼ௧|ݔ௧, ,ܩ ெאሻீܦ|ܩሻܲሺܦ   

where the sum is taken over all MB structures G, in the mod-
el space M. The first term in the summation,ܲሺܼ௧|ݔ௧, ,ܩ  ,ሻܦ
is the conditional probability ܲሺܼ௧|ݔ௧ሻ compared with a MB 
that has structure G with parameters that are estimated from 
training data, D. The term ܲሺܦ|ܩሻ is the posterior probabili-
ty, or weight, of the MB structure G given D. The conditional 

probability is thus derived from the weighted average of the 
posterior probabilities for all MB structures. This approach 
proffers a more complete model space, by averaging over a 
suitable set of models, in addition to value-specific relation-
ships.  

D. Lazy Bayesian Rule 
The naïve Bayesian tree learner, NBTree [16], was de-

veloped to improve the performance of a naïve Bayesian 
classifier by incorporating decision tree learning methods. 
Although NBTree lessens the effect of the interdependence 
assumptions made by naïve Bayesian classifiers, it suffers 
from replication and fragmentation problems due to small 
disjuncts. The algorithm builds one tree that best fits all ex-
amples on average, but often the inadequate number of train-
ing examples at the leaves of the tree fails to describe the full 
breadth of examples [17].  

The Lazy Bayes Rule (LBR) algorithm more recently 
emerged from the application of lazy learning to Bayesian 
tree induction [18], and was utilized to support patient-
specific model selection. The LBR algorithm stores input 
training examples and only invokes an ideal Bayes’ rule 
when classifying an unseen case [19]. The antecedent of the 
Bayesian rule is defined by a subspace of the instance space 
to which the test case belongs. The subspace is comprised of 
available training examples selected by the LBR algorithm, 
which is then used as a source of training data for the conse-
quent of the Bayes rule, a local naïve Bayes classifier with 
which the test case is classified. Thus no explicit decision 
trees or rules are built at training time, which enables more 
instance-specific modeling. Hence, the ultimate objective of 
LBR is to grow the antecedent (attribute-value pairs, or con-
ditions) of the Bayesian rule that best matches the test case, 
while decreasing the error of the local naïve Bayesian clas-
sifier in the consequent of the rule. The LBR algorithm has 
demonstrated a lower error rate than any alternative algo-
rithm, as it relaxes conditional feature independence assump-
tions [19].  

III. METHODS 
The objective of this work is to evaluate DBN- and LBR-

based models representing clinical information over time, 
comparing population-wide and instance-specific learning of 
the underlying conditional probabilities in the presence of 
missing data. The topology of the DBN was assumed to be 
known, specified by experts familiar with the data domain. 
Model variables, associated states, and relationships between 
variables were identified based on published literature and 
clinical relevance.  

A. Data Collection and Preprocessing 
Two different datasets were used: 1) a set of medical 

records for 50 neuro-oncology patients seen at the UCLA 
Medical Center, with confirmed diagnoses of glioblastoma 
multiforme (GBM); and 2) a combination of three datasets 
(MedHist00-05, Biomarkers00-05, JointSx00-05) from the 
Osteoarthritis Initiative (OAI), a database of over 4,700 sub-
jects available for public access at http://www.oai.ucsf.edu. 
The former represents raw, clinical data with (unstructured) 
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free-text reports from radiology, pathology, laboratory, sur-
gery, and oncology, in addition to more structured laboratory 
and demographic-related information. The latter is a collec-
tion of data tables covering a longitudinal observational 
study, which has information for subjects assessed at base-
line and at specific follow-up visits (12-, 18-, 24-, 30-, and 
36-months). OAI’s datasets include demographics, imaging, 
and bio-specimen information related to the diagnosis and 
treatment of knee osteoarthritis (OA). While GBM is not 
standardized to any fixed time interval, the total number of 
reports provided a solid starting point for the amount of data 
needed to train our proposed models. The OAI data was cho-
sen for its structured characteristic, and standardization to a 
fixed time frame and intervals. As such, patients could be 
characterized by a specific disease “stage,” or set of features 
with a unique arrangement of values. The OAI data tables 
were chosen based on their longitudinal characteristics con-
ducive to tracking variable changes over time.  

For the UCLA GBM model, 2,970 reports were down-
loaded and processed: for each patient, the body of each free-
text report was extracted using file processing and parsing 
algorithms. The reports for each patient were chronologically 
ordered, and then assembled into a single file for all patients. 
Words/phrases occurring with high frequency across the 
records were highlighted and included in a keyword list. 
These keywords were used to identify the high-level features 
or variables that a domain expert defined for the model. Each 
report was then manually reviewed to extract changes in 
state, or the associated text, for a variable over time. States 
for the level features contrast and symptoms, for example, 
were represented as “improving,” “worsening,” “stable/no 
change,” or “recurrent”; change was characterized by the 
presence or replacement of a different keyword. To signify 
the clinical progression of disease, a particular configuration 
of feature values collected per patient represented data for 
only one time slice (e.g., a patient newly diagnosed will not 
have recurrence). Thus, approximately 80-90% of data was 
missing across all variables. To address this issue, last obser-
vation carried forward (LOCF) was used to impute missing 
values in each patient case per time slice, with the assump-
tion that data was missing at random and unchanged since 
the last observation. LOCF has been used for analysis [20] 
because of its simplicity, ease of implementation, and the 
assertion that the bias resulting from carrying observations 
forward yields a “conservative” analysis. The data was then 
re-sampled using non-parametric, iterative bootstrapping 
(i.e., case resampling) to bolster statistical power [21]. A 
new sample was drawn by applying LOCF to each case that 
met a predefined fixed time interval. For example, after 
every fourth day a patient observation was made, the last 
original observation following a four-day span was carried 
forward to derive a bootstrap sample. This method generated 
an additional 2,980 bootstrap examples using a week-long 
time interval for resampling. 

The OAI dataset was already standardized. With the ex-
ception of a quality of life (QoL) variable being nominal and 
multidimensional, all other chosen features were binary, and 
no variables required discretization. As some subjects had no 
data recorded in certain follow-up studies, data for all pa-

tients were combined into a single file using file processing 
scripts. Approximately 8% of the data were missing; in con-
trast to the GBM dataset, null value placeholders were subs-
tituted in these cases, rather than impute new values, to better 
preserve the underlying distribution of the observed data. 

B. Model Construction, Evaluation Metrics 
A different model was generated for each dataset. Obser-

vations for the GBM model (Fig. 1a) were not standardized 
to fixed time intervals, so a three-slice temporal model was 
defined for this initial work: initial diagnosis and treatment 
(T = 1); first tumor recurrence (T = 2); and an ensuing 
change in status, either improvement or progression (T = 3). 
These stages characterize the disease’s progression, which 
was marked by a transition in the patient’s presentation of 
variables. The GBM model contains 12 multivariate and 
binary variables (Table 1) measured at each stage, for a total 
of 36 variables. The model can thus be seen as a static BBN 
replicated for the number of total time slices, with arcs be-
tween slices that only point forward in time. For the OA 
model (Fig. 1b), we used a total of 38 variables across a six-
slice model. Not all variables (Table 2) were collected at 
each time stage: some variables measured at baseline were 
explicitly not measured in every follow-up study. Other va-
riables not measured at baseline but collected in follow-up 
studies were excluded in this model. 

TABLE I. FEATURES EXTRACTED FROM THE GBM DATASET

Feature Attributes 
Contrast New, stable, worsening, improving, recurrent 
Symptoms New, stable, worsening, improving 
Chemotherapy Temodar, Avastin, Tarceva, carboplatin, BCNU, 

etoposide, irinotecan, other, combination 
Radiation Yes, no 
Medication Decadron, Dilantin, Keppra, Kytril, synthroid, 

Ativan, combination 
Performance  S1, S2, S3, S4 
Complications Hemorrhoids, pneumonia, breast nodule, seizure, 

other, paralysis, aphasia, lung complication, sepsis, 
deep vein thrombosis (DVT), UTI 

Labs Yes, no 
Tumor location Frontal lobe, temporal lobe, parietal, occipital, 

tempo-roparietal, fronto-temporal, fronto-parietal, 
temporo-occipital, occipito-parietal 

Surgical pathology Yes, no 
Resection First, second, third, fourth 
GBM Yes, no 

TABLE II.  FEATURES EXTRACTED FROM THE OAI DATASET 

Feature Attributes 
Knee pain Yes, no 
Knee replacement Yes, no 
Quality of life  None, mild moderate, severe, extreme 
Pain medication Yes, no 
History of arthritis Yes, no 
Knee arthritis Yes, no 

2018383



MB-modified versions of only the GBM model were 
built to determine whether the high-dimensionality of the 
network (i.e., number of states per variable) affected predic-
tive power. A biostatistician initially provided the domain 
expert knowledge to perform a non-parametric analysis with 
classification and regression trees (CART) on the full GBM 
network. The preliminary analysis showed that increasing 
the number of regression trees was necessary to improve 
classifier performance. Consequently, the input space was 
reduced by pruning the GBM model, ultimately to obtain 
more accurate predictive results for our evaluation. Our ex-
pert selected a subset of variables with value of importance 
of over 60% per the results of the CART analysis, pruning 
the network to a total of 18 nodes. This new subset formed 
the MB-modified model (contrast, symptoms, chemotherapy, 
medication, tumor location, performance status). Further 
receiver operator characteristic (ROC) analysis on the MB 
model clearly supported the need for imputation to handle 
the missing data in the GBM dataset: the area under the 
curve (AUC) for ROC analysis improved from 70-77% with 
the original 36-variable network and unimputed data to 80-
95% with the pruned MB model and imputed data. The bi-
nary nature of the OA model’s variables and overall fewer 
input variables were not amenable to the same MB pruning 
and evaluation.  

With the network topology and datasets, both the GBM 
and OAI DBNs were processed using BayesiaLab software 
[22]. Variables, associations, and variable states were ma-
nually formulated using BayesiaLab tools to specify the net-
work. BayesiaLab was responsible for automatically learning 
the associated CPTs from the processed data used as training 
data. 

IV. RESULTS 
Evaluation metrics for both models were based on a gen-

eral measure of predictive power, or classification accuracy. 
Precision, or positive predictive value (PPV), was also in-
cluded to measure the proportion of each model’s correctly 
identified true positive cases. Both metrics were assessed 
through a stratified tenfold cross-validation.  

A. DBN Evaluation 
1) UCLA GBM model 

Two rounds of evaluation were conducted for the GBM 
model. Evaluation was performed on an arbitrarily selected 
set of target variables in the model, predicting the likelihood 
of a given state. Prior evidence used to predict the target va-
riable state included observation of all variables in the net-
work per time slice, as shown in the associated tables.  

The first evaluation involved using priors for the 
complete 36-variable network. The performance varied from 
60-77% in predicting the presentation of “Contrast (en-
hancement),” “Symptoms,” “Chemotherapy,” and “Medica-
tion” in the second (T = 2; initial progression) (Table 3) and 
third (T = 3; change in health status, improving or worsen-
ing) (Table 4) time slices. In general, the DBN demonstrated 
improvement in prediction at T = 3 (given observance of 
variables in prior time slices as priors), a potential reflection 
of the data gradually stabilizing over time: the progression of 
GBM is more predictable in later stages of the disease. The 
results of the MB DBN evaluation are comparable for T = 2, 
and slightly better for T = 3 (with the exception of predicting 
medication, where accuracy dropped marginally from 77% 
to 76%). Overall, the MB demonstrated only a slight im-
provement in prediction for the DBN, which could indicate 
that the MB failed to model necessary relationships con-
tained in the full network model needed for predictive accu-
racy. Precision ranged from about 60-80% across the GBM 
DBM. 

2) OAI model 
For the OAI dataset, one evaluation was performed on 

the full DBN and the remaining evaluations used selected 
previous months’ observations to predict the target variables 
at the 36-month follow-up stage (Table 5). The binary nature 
of the variables and lower dimensionality of the state-space 
improved prediction rates overall, relative to the GBM mod-
el. Furthermore, in some situations, the results of the OAI 
evaluation suggest that including additional prior information 
may weaken overall DBN prediction rates. For instance, 
when only using the 30-month observations to predict the 
state of the patient at 36 months, the prediction rate was 

 
Figure 1. Single time slices from each of the models generated for the clinical datasets. Each model is replicated several times to represent different time points 
in the course of the patient’s diagnosis and treatment. (a) The dynamic Bayesian network (DBN) for glioblastoma multiforme. (b) The DBN for osteoarthritis. 
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higher or comparable in all categories than when using addi-
tional past information (e.g., using both 24- and 30-month 
observations; or the full network). This implies that while 
more prior evidence may be helpful to learn each case, the 
added evidence may not be needed when the model is used, 
or more data is needed to improve BBN training. Precision 
results for the OAI DBN are shown in Table 6. 

B. LBR Evaluation 
1) UCLA GBM model 

Next, a series of LBR evaluations were conducted using 
Weka [23]. The precision for target variables were deter-
mined at T = 2 and T = 3 using combinations of information 
to learn the associated probabilities: from the MB of the 
prior time slice; from all nodes from the immediately prior 
step; and from all nodes from the current and immediately 
prior step, minus the targeted predicted value. The results 
(Tables 3, 4) show that with each added time step, the pre-
diction rate improves. The results also demonstrate im-
provements across all variables in prediction with the LBR 
algorithm relative to the DBN. For example, for predicting 
the state of chemotherapy for T = 2, the LBR-based ap-
proach ranged from 72-85% given different levels of evi-
dence, whereas the DBN approach achieved only 59-60%. 
The comparatively lower predictive power of the DBN sug-
gests that expert knowledge captured in the population-wide 
model is inadequate compared to a more specific, patient-
centered model to describe the specific presentation and 
treatment or diagnostic paths for GBM. The LBR evaluation 
demonstrates clear advantages in using the patient-specific 
model selection for fitting the GBM data. Furthermore, in 
evaluating the model at T = 3, evidence earlier than the time 
step immediately prior (i.e., T = 1) has relatively little pre-
dictive power compared to more recent information (i.e., T 
= 2). The evaluation using evidence at T = 2, 3 further sup-
ports this finding: evidence at T = 1, 2 is outperformed by 
using only the evidence in T = 2: the added evidence in T = 
1 does not help improve predictive accuracy. This may imp-
ly that the immediately previous state is the only prior evi-
dence needed to predict future states. The MB-version of the 
baseline model for evaluating T = 2 demonstrates only 
comparable performance to the full baseline topology; the 
MB-version of the T = 2 model for evaluating T = 3 out 
performs the full baseline network, which suggests the vola-
tility of baseline or earlier data. Precision per variable in the 
LBR evaluation ranged from 62-70% at T = 2, and 61-76% 
at T = 3 with the MB-modified model for T = 1. 

2) OAI model 
The results of the LBR evaluation on the OAI data are 

shown in Table 5. Again, evaluation was conducted on the 
complete network to predict the 36-month target variables; as 
well as using data from prior observation time points to pre-
dict the 36-month presentation. There is relatively clear con-
sistency in the predictive accuracy of each variable, and re-
sults are improved over the DBN. Overall, the structured 
characteristic of this dataset may be more robust to the ef-

fects of overtraining and data sparseness. However, the high 
degree of accuracy is tempered by the fact that most of the 
variables are binary, and have fewer bins to complicate the 
prediction task. Still, based on these evaluations, LBR exhi-
bits better predictive rates over the DBN’s global learning 
model. 

V. DISCUSSION 
The results of this study demonstrate the possible advantages 
of the Lazy Bayesian Rule algorithm as a technique for se-
lecting an instance-specific predictive model for a given set 
of data. Patient-specific models that take into account a par-
ticular configuration of variable values for every patient case 
can more effectively model the unique specificities of dis-
ease. Indeed, a model must either implicitly or explicitly 
perform variable selection, choosing the most appropriate 
subset of a domain’s variables for use. For every variable 
that is chosen, one must also choose the variable’s represen-
tation within the model (e.g., categorical, continuous, nomin-
al, number/type of attributes) and its relationship to other 
chosen model variables. A population-wide model tends to 
include only the predictors that on average provide the best 
predictive performance. An instance-specific model, on the 
other hand, may include variable values that are highly pre-
dictive for the case at hand but are not applicable to the gene-
ral population-wide model. Thus, for rare cases the typical 
population-wide model may predict poorly, whereas an in-
stance-specific model can do well. 

The LBR approach, which incorporates Bayesian rule in-
duction, can be readily applied to different domains, as 
shown in this work with both GBM and knee OA. Moreover, 
the approaches demonstrated in this study are unique in their 
application to multivariate clinical variables, particularly in 
modeling GBM. Most network models in the clinical domain 
are limited to a priori knowledge and are applied to outcomes 
or diagnostic models, rather than state models. While pre-
dicting outcomes holds significant clinical value, state mod-
els provide a full context to understanding the patient's 
changing health over time, in relation to specific treatments, 
interventions, other variables, etc. 

Two results of this study are of potential significance. 
First, the instance-specific LBR algorithm outperforms a 
traditional DBN in terms of predictive accuracy. The patient-
specific technique that LBR employs includes information 
from unique training cases that have varying variable-state 
configurations, resulting in the construction of a more robust 
state-space. Thus, the LBR model construction may be a 
more ideal approach when handling clinical data. Second, 
the results of evaluating the LBR suggest that the full patient 
history and set of associated data may not be necessary for 
accurate prediction (at least, in some scenarios). Using state 
values from the time step or stage immediately prior to the 
current state demonstrates improved accuracy over added 
information from multiple time steps. This contradicts cus-
tomary assumptions that the full context of a patient record 
(i.e., history) will always improve predictive accuracy. 

The completeness of the data may have also impacted the 
predictive accuracy at earlier stages of GBM; missing data 
may have a more significant role in poorer predictive accura-
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cy at T = 2 versus T = 3. For example, data was often miss-
ing earlier in the patient’s history due to the fact that the pa-
tient was transferred from another hospital (and thus, the 
history was not well-documented locally); or the patient’s 
tumor had already progressed significantly. Also, our evalua-
tion did not normalize the patients by a time scale defining 
clear boundaries between the three stages defined in this 
work; the number of data points per stage was dependent on 
the length of each stage, and was unique to each patient.  
Imposing a specific temporal framework on the cases (i.e., 
three time slices) in the GBM model ignored potential varia-
tion and other useful trend information inherent to given 
individuals. Moreover, in models involving a large number 
of variables, several values are likely to be missing, so a po-
tentially large amount of otherwise informative data is dis-
carded. To handle missing data we could use complete case 
analysis and other forms of imputation. Imputation-based 
methods other than LOCF attempt to fill in missing values 
using the observed mean value of the variable, or less naïve 
strategies based on a predicted value from regression analy-
sis on known variables. Multiple imputation methods (i.e., 
filling with more than one value) have also been developed 
[24] to avoid biasing the variances of imputed variables. 
Still, imputation schemes are far from perfect: filling in val-
ues with averages per variable preserves the sample means, 
but distorts the covariance structure, shifting estimated va-
riances and co-variances to zero. Imputing predicted values 
from regression analysis also tends to favor observed correla-
tions, biasing them away from zero.  Likelihood-based mod-
els are another method that could be used to handle missing 

data [25], [26], by inferring a model’s parameters from the 
existing data that most likely explain the observed data. 
These models facilitate longitudinal analyses, and are more 
robust against potential bias from missing data compared to 
the LOCF approach. 

To further validate the accuracy of our results, additional 
evaluation methods should be investigated to assess both 
DBN and patient-specific models. Namely, collecting out-
comes-related variables to evaluate the models would be the 
ultimate measure of utility for these models. In addition, 
incorporating outcomes information may allow us to refine 
our models for improved prognostic accuracy. For example, 
partial predictive scoring (PPS) was introduced [27] as an 
empirical measure to evaluate model performance for BMA. 
A higher PPS score indicates that a set of events would occur 
with higher probability in that set. PPS-based metrics may be 
adapted here to provide further insight into the models’ ca-
pacity to correctly infer values over time. 

The use of domain-expert knowledge for the feature se-
lection process is acknowledged as being not only time in-
tensive but irreproducible and inapplicable to datasets in 
other domains. The dependence on expert-driven approaches 
to feature selection may also not necessarily help exhibit the 
efficacy of the instance-specific model for prediction, which 
is the focus of this work. In short, the performance of the 
models may be only the result of careful data specification 
and feature selection, rather than the characteristics of the 
instance-specific models themselves. While the supervised 
approach of feature extraction ensured a degree of consisten-
cy and completeness across extracted concepts/features, 

TABLE III.  PREDICTIVE POWER RESULTS FOR GBM MODELS (T =2)

Feature Regular DBN (predicting T = 2) LBR-based DBN (predicting T = 2) 
Full network MB with imputed data MB only, from T = 1 All nodes, from 

T = 1 
All nodes, from 

 T = 1,2 
Contrast 62% 61% 66% 66% 77% 
Symptoms 73% 72% 81% 77% 89% 
Chemotherapy 60% 59% 72% 80% 85% 
Medication 67% 67% 72% 74% 87% 

TABLE IV.  PREDICTIVE POWER RESULTS FOR GBM MODELS (T=3) 

Feature Regular DBN (predicting T = 3) LBR-based DBN (predicting T = 3)  
Full network MB with imputed 

data 
All nodes, from 

 T = 1 
MB only, from 

 T = 2 
All nodes, from  

T = 1, 2 
All nodes, from  

T = 2, 3 
Contrast 68% 73% 66% 80% 79% 79% 
Symptoms 79% 82% 77% 89% 89% 91% 
Chemotherapy 73% 74% 75% 86% 86% 88% 
Medication 77% 76% 74% 86% 85% 89% 

TABLE V.  PREDICTION RESULTS FOR OAI MODELS 

Feature Regular DBN  LBR-based DBN 
Full  

network 
36|30 

months 
36|30|24 
months 

36|30|24|18 
months 

Full  
network 

36|30 months 36|30|24 
months 

36|30|24|18 
months 

Quality of life (QoL) 71% 71% 72% 72% 74% 74% 75% 76% 
Knee pain 85% 98% 87% 86% 99% 100% 99% 100% 
Right knee symptom  72% 79% 74% 73% 79% 81% 80% 80% 
Left knee symptoms  70% 77% 71% 71% 78% 79% 78% 79% 
Knee replacement 88% 98% 94% 94% 98% 99% 98% 98% 
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evaluation of other instance-specific models and population-
wide models may lessen the effects of feature selection bias.  

VI. CONCLUSIONS 
This paper presents a comparison of a DBN-based ap-

proach to modeling clinical data over time, against an LBR-
based methodology. The former can be seen as a population-
wide model, which creates a globally-optimized set of prob-
abilities for a given set of training data; while the latter uses 
an instance-based framework that averages locally optimized 
models given specific examples of data. The two approaches 
are compared given two disparate datasets: a clinically-
derived neuro-oncology dataset; and an observational study 
involving knee osteoarthritis. Using a series of comparative 
tenfold cross-validation studies, the LBR-based approach 
outperformed the DBN in correctly predicting future states of 
high-level features. Moreover, this investigation found that 
in some cases, using the full patient history as prior evidence 
may not be useful in predicting future states – in fact, having 
only the immediately prior stage of data may be sufficient. 
The measured PPVs for each model, demonstrate the models' 
strong correlation with which it can approximate to the popu-
lation, while utilizing case-specific information.  

Future work will concentrate on optimizing instance-
specific model performance. Specifically, structuring the 
data in a temporal framework that respects the clinical evolu-
tion of the patient and disease, and extracting features that 
best represent the population are pivotal for optimal predic-
tion. The data imputation (i.e., LOCF) approach used to 
create a dataset for training the model may not hold in the 
clinical setting [28], as the patient state may have changed 
before the observation is carried forward. Therefore, LOCF 
may bias estimates of treatment effects and the associated 
standard errors, based on the amount of missing data per 
feature. A few research studies [29], [30] have evaluated 
how direct likelihood and multiple imputation schemes and 
LOCF may impact final results, but other resampling tech-
niques have yet to be completely explored for nominal va-
riables (i.e., clinical text data).  

Further evaluations could be conducted on varying confi-
gurations of prior evidence to determine their effect on mod-
el performance. The window of time that separates the prior 
evidence and prospective event or stage must be considered; 
namely, the more time that has elapsed between events with 
existing data and any future time point will be more difficult 
to predict. A more thorough evaluation would omit more 
time points that separate prior and a future state to be pre-
dicted. To assist in this assessment we will include added 
statistical metric mores to fully describe the performance of 
each model; negative predictive value and ROC analysis 
would first be considered to determine whether the models 
can correctly distinguish cases that do not belong in a partic-
ular class. Also, as researchers have found [26], LBR is 
computationally inefficient if large numbers of objects are to 
be classified from a single training set. As our evaluation 
was based on classifying one feature at a time, real-world 
prediction that would be worth replicating would involve 
classifying a feature, given a more specific configuration of 
variables. Clinically, this predictive accuracy would hold 

more significance and practicality if one were to consider a 
treatment decision (e.g., assessing whether a specific treat-
ment would be more effective in optimizing a given varia-
ble’s state, as per parametric sensitivity analysis). While the 
preliminary results from evaluating recall and precision of 
instance-specific models are promising, the strength of the 
study could improve with statistically significant results 
based on evaluating clinical outcomes prediction with in-
stance-specific models. 

We may also combine an unsupervised feature extraction 
technique, based on statistical likelihoods (e.g., topic mod-
els), with an application of a standardized vocabulary to con-
struct a more robust set of features for modeling. For exam-
ple, semi-supervised learning methods can be used: the ap-
proach would utilize pre-labeled concepts from a similar 
classification of documents to the extraction concepts for our 
corpus of clinical documents [31]. Applying a standardized 
biomedical concept mapping program to extract concepts 
such as Metamap could help obtain a more standardized set 
of concepts between supervised and unsupervised extracted 
data. Because this work relies on one domain expert the ap-
proach is acknowledged for high potential in biased feature 
extraction .  
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